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FOREWORD
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Engineer, AFAL/NVT-l, Air Force Avionics "-aboratory, Wright-
Patterson Air Force Base, Ohio.
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Aerospace Technology Division, Applied Research Laboratories (ARLI,
The University of Texas at Austin, Austin, Texas, as ARL reports,
and other portions dealing with the fundamentals of ballistics are based
upon material found in the References. This report provides the Air
Force and Industry with a comprehensive treatment of exterior ballistics,
as applied to airborne applications, under one cover.
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ABSTRACT

Methods of exterior ballistics applicable to utilization in modern
airborne fire control system design are documented herein. The fund-
amentals of exterior ballistics are included,along with a description of
currently used ballistic and aerodynamic notations, a discussion of the
limitations of the semi-empirical aerodynamic force and moment system,
and methods of preparing aerodynamic data for use in trajectory compu-
tation. Tutorial material is provided to give the reader an understanding
of windage jump caused by the complicated angular motion of a spinning
projectile. The Siacci method is described and means for improving its
accuracy are developed. Six-degree-of-freedom equations are deiived
in several different formulations for exploratory studies and digital com-
puter computations, and the development of approximate equaticns for
rapid evaluation of trajectory tables is included. Methods for calculating
trajectory initial conditions are provided for shells fired from a turreted,
gatling gun in a manetivering aircraft, and the problems of ballistic and
kinematic prediction are discussed briefly. The material covered he -ein
should provide personnel in the Air Force and in industry with sufficient
knowledge of exterior ballistics for advanced fire control system design.
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SECTION I

INTRODUCTION

For the design of a modern airborne gun fire control system, a

knowledge of exterior ballistics is a necessity. The complicated motion

of a spinning projectile, fired crosswind from a gun in a high-speed

aircraft, and the accurate prediction of such motion requires careful

study.

These statements are borne out by consideration of the magnitudes

of aerodynamic forces and moments acting upon a projectile in flight. It

is almost incredible that the aerodynamic drag on the 20-mm, M56

round fired at sea level at 4000 ft/sec is about 20 lb, and that the left

force at right angles to the velocity vector is about 9 lb if the angle of

attack of the projectile is 3 deg. The 20-mm round itself weighs only

0. 22 lb. The effect of the lift, and other smaller forces, is to deflect

the motion of the projectile away from its initial direction of motion, and,

as a rule of thumb, this deflection, called the windage jump, is one milli-

radian (mr) per initial degree of angle of attack. In the example above,

the windage jump is 3 mr and one might ask how it is that a 9-lb force

acting at right angles to the velocity vector of a 0. 22-lb projectile pro-

du-es only a 3-mil deflection. The answer is that the lift force preces.

ses with the projectile about tke velocity vector and nearly cancels out.

That a careful study of the six-degree-of-freedom motion of a pro-

jectile is nece-ssary should now be apparent. The deviations from straight-

line motion of a spinning projectile in flight are due to complicated inter-

actions of aerodynamic forces and moments, gravity, and gyroscopic

effects. For accurate prediction of projectile motion, these effects

must be taken into account.

This report is limited to an investigation of the motion of a spin-

ning projectile fired from a rifle. Finned missiles and rockets are not

included.



Whereas accurate six-degree-of-freedom projectile trajectories

can be calculated directly from Newton's laws of motion, computations

of this type are currently not believed feasible in airborne fire control

applications because exce-sive computer time is required. Careful

study, however, leads to the selection of appropriate algorithms which

yield trajectory data within the error budget alloted to exterior ballistics

calculations, and which can be utilized in airborne applications.

Because of the 9 or 10-year lapse of interest by the Air Force in

exterior ballistics, it is felt that a presentation of the fundamentals of

the subject is not out of place in this report. New personnel in the Air

Force and in industry are not likely to be knowledgeable in this subject,

nor is the necessary literature readily available. The best available

book on exterior ballistics is the one by McShane, Kelley, and Reno

(Ref. 1), but this book is not well suited to current ne-As. Other useful

information is to be found in reports written mostly in the 1950's and

earlier which may be hard to obtain, such as in Refs. 2 through 20.

Most of this work is based upon the early work of Fowler, Gallop, Lock,

and Richmond (Ref. 21),and upon the works of Nielsen and Synge (Ref.

22), and of Maple and Synge (Ref. 23). A useful book on fire control is

NAVORD Report 1493 (Ref. 24), and the book by Davis, Follin, and

Blitzer (Ref. 25) provides information applicable to the exterior bal-

listics of shells. The notation of Ref. 25 is somewhat different than

used elsewhere, but the book provides very good insight into projectile

motion. After burning, the motion of a spin-stabilized rocket is the

same as that of a shell. Two other books on exterior balliscics are the

ones by Moulton (Ref. 26) and Bliss (Ref. 27).

The aerodynamic force and moment system in current use is semre

empirical. Whereas the functional form of the forces and moments may

be partially derived from considerations of dimensional analysis and

projectile symmetry, aerodynamic theory has failed to produce accurate

expressions for these forces and moments. Aerodynamic data used in

trajectory computation is acquired from wind tunnel measurements and

2



free-flight tests. The arguments of dimensional analysis and symmetry

which are used co develop the aerodynamic force and moment system in

use are presented in Section II. Discussion of the measurement of aero-

dynamic data is excluded. Also included in Section II is a comparison of

the ballistic K notation and the aerodynamic C notation, physical identifi-

cation of the various aerodynamic forces and moments, a discussion of

weaknesses in the force and moment system, and modeling of aerodynamic

data for computer utilization.

Section III is tutorial and should provide the reader with the neces-

sary background to understand the nature of the angular motion of a spin-

ning projectile. An understanding of the fundamental causes of windage

jump follows from knowledge of projectile angular motion.

Equations of motion suitable for computation of trajectories on a

computer are given in Se.-tion IV. Included are a matrix formulation

and an Euler angle development of the six-degree-of-freedom equations.

Also included is a set of a,1 proximate equations which are useful for

rapid generation of traj -ctory data when computer time is a factor.

The basic Siacci rTaethod is presented in Section V, along with

methods to improve its accuracy. The Siacci method is a good candi-

date for onboard utilization because it provides an approximate closed

form solution to the trajectory computation problem.

Equations for initial conditions for trajectory calculations are de-

rived in Section VI. These equations apply to a turreted, gatling gun

fired from a moving aircraft. They are possibly more complicated than

necessary, but they may be simplified as any application permits. A

brief discussion of the problems imposed by kinematic prediction is also

included in this section.

3



SECTION II

AERODYNAMIC FORCES AND MOMENTS

1. General

The aerodynamic forces and moments acting on a projectile in

flight result from frictional forces and pressure distributions over the

projectile body which in turn result from the motion of the projectile

through the air mass. A complete and accurate solution for projectile

motion would therefore involve solution of the equations of fluid flow

around the projectile. In practical applications, this is beyond the cap-

abilities of any available digital computer, but fortunately this is not

necessary. The alternative is a semi-empirical approach whereby aero-

dynamic forces and moments are measured in wind tunnels and by means

of free-flight tests. This aerodynamic data is modeled in a form suit-

able for computer use and employed in trajectory calculations. The

means by which this data is modeled are treated in this section.

Dimensional analysis is a study t± certain mathematical relation-

ships, explainable in terms of the d .aensionality of measurements,

which exist between physically me..surable quantities. Physically mea-

surable quantities ha e dimensions such as mass (M), length (L), Time (T),

or velocity (LT-, and physical laws are independent of these units of

measure. Certain restrictions are imposed by nature upon the functional

form of mathematical rtlations describing such laws, and dimensional

analysis identifies these restrictions. In the semi-empirical develop-

ment of the aerodynamic force and moment system applicable to a spin-

ning shell, arguments based upon dimensional analysis and symmetry

play an important role.

A shell possesses two types of symmetry, namely rotational and

mirror. An object has rotational symmetry if "it looks the same"

when it has been rotatedr through a given angle about a particular axis.

Similarly, an object has mirror symmetry if it looks the same under

certain conditions when viewed in a mirror. Dimensional analysis and

4



symmetry are used to derive the functional form of the aerodynamic

force and moment system in terms of the aerodynamic or ballistic coef-

ficien.s.

Since the approach used to mathematically describe aerodynamic

forces and moments is semi-empirical, it has certain weaknesses.

These weaknesses are discussed briefly.

The approach herein is to first mathematically model the force and

moment system and then to identify the various forces and moments. One

might expect the analysis to proceed in the other direction, but use of

this systematic approach uncovers unsuspected forccs and moments.

The systematic approach should not trouble the reader since he will al-

ready be aware of the existence of certain forces such as the drag, the

lift, the Magnus force, the Magrius moment, etc., and their appearance

in the equations to be developed will be no surprise.

This section also contains a comparison of the different notations

which are in current use for the description of the aerodynamic forces

and moments which act upon a projectile in iree flight. The terminology

used in the literature to describe the aerodynamics of the operational

20-mm, M56 round is the K, or ballistic, nota'ion, whereas that used to

describe new 20-mm, 25-mm, and 30-mm rounds under development is

the C, or aerodynamic, notation. Much of the old ballistics literature

which employs the K notation is still of interest, but the new C notation

is used by wind tunnel and free-flight test range personnel in the col-

lection of new ballistics data. Familiarity with both notations is manda-

tory.

Choice of an appropriate notation for ballistics is subjective. The

C notation is somewhat awkward in use in mathematical developments,

although it does exhibit a lucidness of meaning which is absent in the K

notation. The two systems of notation are mathematically equivalent,

and the K notation is used throughout this report, since most of the lit-

erature upon which this report is based is written in terms of the K

notation.

5



2. Dimensional Analysis

The subject of dimensional analysis is an important part of the

basic theory of aerodynamics, and since it is well documented (see, for

example, Refs. 1, 28, and Z9), it will not be the purpose of this section

to present a detailed account of the subject. Rather, results derived

from the theory will be applied to the problem at hand.

If a, P, ... , w are physically measurable quantities (with dimen-

sions) which satisfy an equation which represents a physical law, such

as

¢(a, 1, *..., c) = 0

this relation should also be satisfied if the units of measure of a, 1, ... , w

are changed (e. g., from grams, centimeters, and seconds to pounds,

feet, and hours). This is reasonable, since one would not expect the

functional form of p to change under such a transformation. A theorem

of dimensional analysis, known as the Buckingham fi - theorem, follows

from this assertion. Crudely put, the theorem states that the relation

(a, 3, ... ,) = 0 can be replaced by another dimensionless relation

ý(•I'7r.' "'' Trn-m )= 0

where n is the number of parameters in the set of measurable quantities

a, 1, ... , w, and m is the number of fundamental dimensions (pounds,

feet, seconds, etc.). The ri, for i = 1, 2,..., n-m, are dimensionless

products of the measurable quantities of the form

a. b. z.1 1 1
it=a 1 ... w

One would expect intuitively the existence of a function such as 4.

The nature of a physical law is independent of the units of measure by

which it is described, and a function such as 4 should be unaffected by



changes in units. Since the products ir. (for i - 1, 2, n-m,are1
dimensionless, they do not change value with changes in units and it

follows that 4, is unaffected by such changes. The function 4 is

essentially a rearrangement of p.

As an example of the use of the E uckingham n -theorem, consider

the motion of a body with acceleration, a, and initial velocity, v. The

body is observed to move a distance, s, in time, t, and this motion is

described, of course, by the iormula

4(s,v,a,t) = s - vt- at2 = 0
2

But suppose, for the sake of argument, that this formula is not known,

and that the object of an experiment is to discover the functional form

of 4. This can be done by varying v and a in some systematic manner

and by measuring s as a function of t. Now, there are four measurable

quantities, s, v, a, and t, and two fundamental dimensions, length, L,

and time, T, and, according to the Buckingham In - theorem, there are

two dimensionless products, n 1 and irt . These are

sa

v

at
2 v

and there must be a dimensionless function

which describes the motion of the body in question. It is obvious that a

functicn of two parameters is simpler than a function of four parameters,

and so it is easier to fit qp to the data than to fit 4. It is found that

7



s at) sa at I/

v v v2 
v 0

2

That i is equivalent to c may be proven by multiplying , through by a/v

In general, The Buckingham nl-theorem is used to reduce the number of

independent parameters and thereby simplify formulae representing

physical laws.

In the present application, the measurable quantities which describe

the motion of a projectile through the air and their units are as follows:

Components of projectile v-locity u L/T

Components of projectile angular
velocity T-1

Air density p M/L 3

Viscosity of the air 4a M/LT

Speed of sound in air Vs L/T

Projectile diameter d L

Force on the projectile F ML/T 2

There is a total of n = 11 measurable quantities (three each for u and co),

a total of m = 3 fundamental dimensions (M. L, and T), and it follows

that there should be n - m = 8 unique dimensionless products. With u

instead ol u1 , they are as follows:

F Dimensionless force

pd2 u2

M- u Mach number

V

R = Pud Reynolds number

8



V Dimensionless spin
u

u 2  Copnet- and- Components of cross velocity
u u

w zd w3d
-- and- Components of cross angular
u u velocity

Thus, there is a dimensionless relation which is a function of these

dimensionless products. If this relation is solved for F/pd2u , an

equation of the form

F = P d 2 u 2 K M R e v u 2 3 2 du- - -d - 3 d )

is obtained in which the function K is dimensionless.

Although it was stated that the components of ii are among the

measurable quantities, u is used herein instead of u1. The principal

references for this development are Refs. i, 3, and 10. In Refs. I and

10, u1 is used, whereas u is used in Ref. 3. The arguments of dimen-

sional analysis are in no way affected b r this choice, and while the use

of u1 is advantageous for some purposes, the use of u is more common.

This development ignores the fact that the aerodynamic force can

be resolved in three orthogonal directions. There are actually three

relations such as the one above, and there are also three equations for

the aerodynamic moment of the form

3 2, u2  u 3  W 2 d w3dG =pd u K' (MR e'u' -ýv- -u- 0 -u ,-u

in which K and K' are known as aerodynamic or ballistic coefficients.

It will be shown in the following sections that the components of F and G

can be represented as sums of expressions similar to those above con-

taining dimensionless functions which are ,41so known as aerodynamic



coefficients. This will follow from arguments applicable to projectile

symmetry.

3. Rotational Srymmetry

In the preceding subsection, dimensional analysis was employed

to ascertain information as to the nature of the functional form of the

aerodynamic forces and moments which act upon a projectile in free

flight. In this subsection and the next, more information of the same

type will be obtained by examination of the properties of symmetry of

a projectile. Rotational symmetry will be treated in this subsection

and mirror symmetry in the next (Refs. 1, 3, 8, 10, 22, and 23).

In vague terms, a projectile is described as being rouad. What is

meant, of course, is tha. the appearance of the projectile is unchanged

by a rotation about its longitudinal axis. It follows under rather general

assumptions as to surface finish, etc. that aerodynamic forces and

moments are also unchanged by such a rotation. A projectile with these

properties is said to possess rotational symmetry and these properties

may be exploited to gain additional information as to the nature of the

aerodynamic forces ana moments.

It is assumed that the projectile in question has an angle, 0, of

rotational symmetry, where 0 < 0 < Tr, and that aerodynamic forces and

moments are unaffected by rotating the projectile tbrough the angle 0.

It is noted in passing that the analysis to follow is applicable not only to

shell, but to missiles with three or more symmetrically located fins.

It is necessary to define a coordinate system and parameters

needed in the development. Aerodynamic forces and moments are de-

fined with respect to a right-handed, rectangular, missile-fixed x

x 2 , x 3 coordinate system with the origin at the center of mass of the

projectile, and with the x 1 axis directed toward the nose along the

longitudinal axis. The x 2 and x 3 axis directions are fixed in the projec-

tile. Projectile velocity, angular velocity, aerodynamic force, and

aerodynamic moment are represented by symbols u, w, F, and 6, re-

spectively, and components of these vectors along a designated axis are

10



denoted by the subscript denoting that axis (e. g., u1 is the component

of u along x).

In the development of expressions for aerodynamic forces and

moments, it is convenient to use a complex number notation. The com-

plex number notation provides a convenient way of designating directions

of aerodynamic forces and moments, and it is useful in exploiting rota-

tional and mirror symmetry. The x., x 3 plane is taken to be the com-

plex plane, with x 3 the imaginary axis. Let

X U2 + (Cross velocity) (1)

(W2+iW 3)d (Cross angular velocity) (2)

u

f = F 2 + iF 3  (Cross force) (3)

g = G 2 + iG 3  (Cross moment) (4)

From the results of the preceding section, it follows that Fl/pd 'u

and f/pdz u are functions of the Mach number, M, and Reynolds number,
Re, the dimensionless spin, v, and also of X, X, p, andS, where abar

over a symbol denotes the complex conjugate. It is observed in passing

that the notation employed here differs slightly from that of Refs. 1, 8,

and 10 in which uI replaces u in Eqs. (1) and (2) and in the ratios FI/pd2 u2

and f/pd u . This in no way affects the analysis to follow and leads to

the definition of aerodynamic coefficients consistent with current usage.

At this point, an approximation is made. Since usually _ and w

are a;most parallel to x 1 (the nose of the projectile nearly points along

the direction of motion), it follows that

<< .<11



and it is reasonable to expand the aerodynamic forces in Taylor's series

expansions in X, X, •, and jT containing only constant and first order

terms, i.e.,

F
2 = a b b X+ +b+l + -g (5)

pdZu2 - 1 1

2 = a+cIX+ C + dlX+ d (6)
pdZuZ 1 cujidd

Since FI is real, the right side of the first equation is real. The coef-

ficients al, bi, etc., are functions of M, Re, and v, and for the present

are assumed to be independent of X, X, p., and p.. A different interpreta-

tion will be given later and this requirement will be relaxed, somewhat.

Forces F and f result from the cross velocity, X, and the cross

angular velocity, V, and any changes in X and V will cause changes in

FI and f. Rotational symmetry will be exploited by rotating X and ý±,

without change in magnitude, through the angle of rotational symmetry,

8. This will not change Fi, but it will induce a similar rotation of f,

and it is equivalent to rotating the projectile through an angle, -0.

If , is a vector in the complex x., x 3 plane, it can bc wi:itten as

r =re1 y (7)

If ý is subjected to a positive rotation through the angle 8 about the x

axis, it is transformed into

i(y+G)
= re

or

I8

e ie (8)

12



Hence, rotation of X and [L through 0 results in the following transforma-

tions:

e= i e (9)

I'= IL e i (10)

= fe i (11)

and

F1=F1 (12)

where a prime denotes parameters associated with the new positions of

X and p.. The truth of the equation for f' follows from rotational sym-

metry. The orientation of f' with respect to V' and pt' is the same as

that of f with respect to X and j.. It follows that Eqs. (5) and (6) must be

satisfied by FI, f', X', and L ., and so

F'
212u = a +b +bzL +-bl± +bbi' (13)

=du - a +cdX + 1 d2 (14)

P d u 2  2 1 12Z

Substitution of Eqs. (9) through (12) for X', p ., f', and F shows that

F1  . ....i i-
F a1 +blXeio +bVieio +bTXe-io +bzp e'

pd2 u 1 2p1

f ei L cXei c eie dT- (o +" -- iffe - a2 +c ek + j + dl~e' - -l

pd2 uz 1 2d1p1e

13



and comparison of these relations with Eqs. (5) and (6) reveals that

b( (l- ei) = 0

ab2 (l e- eie) =0

d 1 (i -e~i) 0

d 2 (l e- iO) 0

Since, by definition, 0 < 0 < -r, it follows that

bI = bz = a = d = dz 0

and

:• FI
d2 =a 1  

(15)

pd u

Completely analogous arguments apply to the aerodynamic moments and

hence

.7-2 = e1 (17)

pd u~
4 3k + C4 4 (18)

S~14



The expressions above were derived for a system of coordinates

fixed in the projectile. Actually, they are valid if the xz and x 3 axes

are allowed to rotate with respect to the projectile, or vice versa. To

prove this statement, suppose that an x 1 , x 2 , x 3 system is defined such

that xI coincides with x 1 but the angle between x * and x 2 is ý, where

may be a function of time (Fig. 1). In the x , x 3 system, the vector

may be written

= re

whereas in the xz, x3 system, its representation is

* rei(y+ý)

so the transformation equation between the two systems is

S* =ei

Then

f =fe'i

g ge

X* ke

Sp. = p~e

Obviously F1 and G1 are independent of coordinate systems, and multi-

plying Eqs. (16) and (18) through by e yields
f*, •

f c + c 2 1,

9 c 3 X + c4 p.

15
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x 2

xz
2

Figure 1

The Relation Between the x ,X?, x System and the

xi 1xx3 bystem; X' x Is out of the Page
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Thus, the force and moment equations are valid in the X, x*, x3 system.

This is an important simplification.

4. Mi, ror Symmetry

One might suppose that if the image of a projectile as seen in a

mirror were real, its motion would be governed by the same laws of

physics as those which determine the motion of the projectile itself. if,

iu addition, the projectile possesses mirror symmetry, as will be de-

fined, it should be possible to infer the equations of motion of the "image

projectile" in terms of those of the projectile itself. By this process,

additional information can be gained concerning the aerodynamic forces

and moments (Refs. 1 and 18).

The definition of mirror symmetry is as follows (Ref. 1). A pro-

jectile possesses mirror symmetry if there is a plane, which contains

the longitudinal axis of the projectile, such that, if each point of the

projectile is moved to the point on the opposite side of, , ad equidistant

from, the plane, then the projectile exactly covers itself.

It is assumed that the projectile in question possesses a plane of

mirror symmetry, in which case the xI axis must be in that plane, and

it is also convenient to define the x 2 axis as being in that plane.

Consider the following "thoug',t experiment" (Fig. 2) in which a

projectile is fired past a mirror. It is arranged so that the projectile

plane of mirror symmetry is parallel to the mirror at a given instant

of time when observations of the projectile and its image are made. One

can choose to imagine the surface of the mirror and the plane of mirror

symmetry are coincident but this is not actually necessary. It will be

supposed that u and • represent the motion of the projectile whereas

u' and w' represent that of the image. Similarly, F and G represent thc

aerodynamic force and moment, respectively, acting on the projectile,

whereas F' and G' are associated with the image.

Since x 1 and x2 lie in the plane of mirror symmetry and x 3 is per-

pendicular to it, it follows that x' and x'are parallel to x1 andx
21 x 2 P
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respectively, and that x' is measured in the direction opposite to x3 3where x.1 x, x• is the coordinate system associated with the image.

Expressions for the components of F', G', U', and D' in the xl,

x2, x 3 coordinate system are required in terms of the components of

F, G, u, and :. The linear motions of the projectile and its image

are the same in the 1- and 2-directions, and so are the forces which

cause them; in the 3-direction, the motions and forces are opposite.

Hence

= U, F' = F 1

U2 = u2  F2 = F2

u 3 = -u3 F' = -F3

On the other hand, the angular motions and moments are opposite in

the I- and 2-directions and are the same in the 3-direction, so

' = "1 I' = -G1G1 1

W1 = -W G2 - -G2

(3 = 3 G' = G3

It follows that

F'1 = F (9
1 1 (9

f, = F2 + iF' - F -iF = f (20)
2 3~ 2 3

G 11= -G1()

g'= G, + i G -G 2 + iG = -g (22)

19



II + III

U u

iw , d + i 0 d (-w + W3 )d ( M)

u u
W1'id I d

1 i i (25)
u u

Expressions developed in the preceding section for the aerodynamic

forces and moments contain coefficients cl, cz, etc. , which are functions

of M, Res and v. The values of M and Re are unaffected by reflection

through the plane of mirror symmetry, wherpas v changes sign. Accord-

ingly, for the projectile, we write

F 1 =

pd--u a1 (v) (Z6)

f

C= c(V) X + c 2((v)L (Z7)

pd3 u

g c + 29
3 2 3 (v)X c4 (v)4 (29)pd iu.

and for its image,

Ft1
I a (v') (30)pd 2u 2 =al

S~fi

Pd - C (V')X' + c 2 (v')I' (31)

+pd 2 

2

S~z0



Ig

, ,p~ Z = el(v,) (32)

3d 2 = 3(v')X + c4v'I)t' (33)

Substitution of Eqs. (19) through (25) into Eqs. (30) through (33) yields

F1 I = al(-v) (34)

pd u

f -v - I'-3s

-G1
3 2 e I1v) (36)

pd u

= c 3 (-v)X- c4(-v)I" (37)
pd 3a

Comparison of this set with Eqs. (26) through (29) leads to the con-

clusion that

a (-v) = a (v) (38)

e1(-v) = -el(v) (39)

cl(-v) = c1(v) (40)

C2(v) = c2(v) (41)

c 3 ('v) = -c 3 (v) (42)

""4('•) = c4(v) (43)

z1



Evidently a1 , the real parts of c 1 and c4 , and the imaginary parts of

c2 and c 3 are even functions of v, whereas el, "he imaginary parts of

c and c4 , and the real parts of c2 and c3 are old functions of v.

5. The Ballistic K Notation

In the last three subsections, arguments of dimensional analysis

and symmetry were used to gain insight into the functional form of the

aerodynamic fox ces and moments acting on a p-ojectile in flight. It

was found that the aerodynamic forces and moments can be represented

by equations of the form

2 2Fi = pd u1 a.

2

G,=pd 3u 2e I

G2+ iG3 = pd 3 u 2 [c3k + c4l]

where

u 2 + iu 3

u

UW+ id 3)d

U

and where the dimensionless coefficients aI, c,, c2 , etc., are functions

of M, Re, and v, and satisfy Eqs. (38) through (43) of the last subsection.

The only restriction imposed upon the v.lidity of these equations is that

the first-order Taylor's series expansions in X, X, ji, and .7 are adequate,

and higher order terms are negligible. For the moment, the truth of

this hypothesis is assumed so that the K notation may be introduced.

In the equations above, it is convenient to replace the coefficients.

a1 , cl, c2 , etc., by a new set of coefficients in which each term is

1, ±

-? i ZZ



divided into its real and imaginary parts, and in which all coefficients

are even functions of v(e. g., if a(v) is odd and vb(v) = a(v), then b(v)

is even). The equations above are written as

F1 = -pd2u2KDA (44)

F 2 + iF 3 = pd2 U2[I -KN, + ivKFIX +1 'Kx.F + iKS11i] (45)

G = -pd3 u vKA (46)

G 2 + iG3 = pd 3 u 2 fH-vKT-iKMIX +I-KH + ivKXTIP.1 (47)

where the K's are aerodynamic coefficients and are functions of M, Re,

and v and are even in v. The K notation is known as the ballistic

notation. Signs were chosen so all the K's are positive under normal

conditions, but experience has shown that KT is usually negative.

Separation of real and imaginary parts yields the following

equations:

F2 = -pd 2uKNUz - pd2 uvKFU3

+ pd uvKXFaZ - pd 3uKs W3  (48)

3 = -pd UKNU3 +pd 2 uv KF U
+pd3uvKxFW3 3+pd3uKsW (49)

G2 = -+pd3UVKTu + pd3uKMu3

4 4

-pd 4UKHZ - pd u .KXT W3 (50)

G3 = -pd3UvKTu3 - pd3UKMU2

-pd 4uKHW3 +pd 4UKXTc2 (51)
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6. Physical Identification of Forces and Moments

Each term in Eqs. (44) through (47) bears a name and a physical

interpretation. Nomenclature is given in Table I. The axial drag,

-pd u zKDA, is obviously the component along the projectile axis of

symmetry of the aerodynamic motion-retarding force, whereas the

spin decelerating mnoment, -pd3 u ZvKA, is the frictional moment which

arises from the spin, wi' and which tends to damp w *

The normal force, -pd 2 u2 KNX, is perpendicular to the projectile

longitudinal axis (Fig. 3), and is in the direction opposite to the cross

velocity, X, From the definition of X it follows that

X = sin 6

where 6 is the yaw angle, and Xu is the component of projectile velocity

normal to the projectile longitudinal axis. The plane of yaw is the

plane containing u, Xu, and the Projectile longitudinal axis, so the

normal force is in the plane of yaw.

K is the vector sum of the normal force and the axial drag (Fig. 3).

Resolution of R into components perpendicular and parallel to u yields

the lift, L, and drag, D, respectively, where

L = pd u KL sin 6 '52)

2 2D = -Pd u KD (53)

These two forces are equivalent to the normal force and the axial drag,

and are more convenient for calculational purposes. It follows from

the definitions that

KL = KN cos 6 - KDA (54)

KD KN sin2 6 + KDA cos 6 (55)
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Table I

Ballistic Nomenclature

-pd u K Axial drag
IDA

-pd UýKNX Normal force

ipd u 2 vK Magnus force
F

ipd2 u 2Ks Cross force due to cross spin

pd2 u 2VKXF. Magnus cross force due to
cross spin

-pd 3u I2VKA Spin-decelerating moment

-pd3 u 2VKTX Magnus moment

-ipd u 2K MX Overturning moment

"-pd3 u2HR Damping moment

ipd u vK XTI' Magnus cross torque due to
cross spin
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Normal Force

Lift

Ii Axial Drag

Drag u

Xu

Figure 3

Forces in the Pi.ane of Yaw
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The lift and drag are usually used in trajectory computations rather

than the normal force and the axial drag.

The overturning moment, -ipd u KMX, is the torque which re-

suits from the action of the normal force, and its direction is that of

-iX. It is perpendicular to the plane of yaw and is out of the page in

Fig. 3 (not shown). For a spin-stabilized shell, the center of pressure

of the normal force is usually ahead (toward the nose) of the center of

mass, and the overturning moment usually acts to increase the yaw

angle, 6.

The Magnus force, ipd-u v KFX, is perpendicular to the plane of

yaw and is into the page in Fig. 3 (riot shown). It results from the pro-

jectile spin about the longitudinal axis.

The Magnus moment, -pd 3 u2 v KTX, is the torque which results

from the action of the Magnus force. Its direction is the same as that

oi the normal force provided KT is positive.

The cross force due to cross spin, ipd 2 u 2 Ks•, results from the

"component of cross velocity, ýt, as the name implies. Its direction is

that of i1t, and is perpendicular to ýL and the projectile longitudinal

axis. The cross force due to cross spin is physically small and is

assumed to have negligible influence on projectile motion. Its presence

will be ignored in trajectory calculations.

The damping moment, -pd 3 u 2 KH I, is the torque which results

from the action of the cross force due to cross spin. Its direction is

opposite to that of ±, and its action is to damp the cross angular velocity.

It has an important influence upon projectile motion.

The Magnus cross force due to cross spin, pd u2 vKXF t, has

negligible influence upon projectile motion and is ignored.
S3,

Likewise, the Magnus cross torque due to cross spin, ipd u KXT",
which is the moment associated with the Magnus cross force due to

cross spin, is negligible.
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The reason for retaining the cross force due to cross spin, 'he

Magnus cross force due to cross spin, and the Magnus cross torque

due to cross spin in the analysis is for logical consistency. If these

terms were deleted, a shift of the projectile center of mass would lead

to a logical contradiction. Otherwise, these terms could be excluded

from further consideration. The effect of a shift in center-of-mass

location is treated in the following subsection.

7. Center-of-Mass Location

Different versions of a particular shell (e. g., HEI, AP, etc.)

often have the same external shape, but have different center-of-mass

locations. In order that the same aerodynamic data can be used for all

versions of a projectile, it is necessary to have appropriate formulae

for handling a shift in the center of mass. Such relations are derived

in this subsection.

Aerodynamic forces and momerns act, respectively, through and

about the center of mass of a projectile, and it follows that a shift in

the center-of-mass locati.on will produce a different projectile motion.

On the other hand, it is clear that aerodynamic :-essures and frictional

forces are dependent only on the exterior surface of the projectile and

its motion relative to the air, and do not depead upon the center-of-

mass location. These facts are used to derive the required formulae.

At a given instant of time, it is assumed that F, G, u, and ý are

known for a given projectile. If the center of mass is moved forward

a distance r along the longitudinal axis to a new position, and if primes

denote all parameters defined in a new xl, x, x coordinate system,

which is parallel to the old system but with its origin at the new center-

of-mass position, then, with respect to the new system

SXF

S=I XG 1 + x 2 (G? rF 3 ) + x 3 (G 3 -rF?)
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ul= u+ w X rx

=1 x=(u +

XU1 W3r + r x3 (u 3 - rc 2)

Axial components of F and G are unchanged, so KDA and KA are in-

dependent of center-of-mass position.

In terms of complex numbers, the transverse components be-

come

U,'=_ = u3_ X- ihii

(w + iw)d

2 3

u

f,: = F + iF' =

g1= : + iG' = g -ihdf

where h = r/d (h is r measured in calibers). It is assumed u' = u since

the difference is negligible. The transverse force and moment equa-

tions for the new syscem, Eqs. (16) and (18), become

fi fo = c' X' + c24
pd2 u 

1

- c- = ' + c ,
pd3 u2

Then
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f
cli(X-ihOt) 0.4 C "pX2 = + c24t

p d 2u2
g -ihaf

c (X-ih4) C = Xc•+c 4 - ih(c X + c
3+4'L=pd 3112 3 1

and it follows from a comparison of the coefficients of X and p. that

Cl =-C
I 1

c _ = c 2 + ihcI

co = c 3 -ihc

C = c 4 -ih(c 2 -c 3 ) + h 2 c1

Expressions for the new coefficients in terms of the old may be derived

by use of Eqs. (45) and (47). They are:

KbA = KDA KI = KA

=k K N K6 -- M -h K NKh =KN K' = K -hK

F F T~, KhF

Ks = KS-hKN Kk = KH-h(KS + KM) + h2KN

KF = KxF-hKF KIT = KxT-h(KxF+KT)+h 2 KF

8. Weaknesses of the Aerodynamic Force and Moment System

The aerodynamic system of forces and moments which is described

herein sufferi from certain weaknesses. There are at least three areas

where one can f'.nd fault, namely in arguments based upon projectile

symmetry, in the Taylor's series assumption, -.tnd the projectile past

history. These will be discussed in turn.
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The assumption that every projectile possesses perfect rotational

and mirror symmetry is obviously incorrect. This is a physical im-

possibility. One would expect slight deviations from rotational sym-

metry, and rifling marks on a shell weaken the assumption of mirror-

synrimetry. On the other hand, this is not a very icrious problem and,

in practice, such deviations from the ideal should produce negligible

error on the average. These effects probably give rise to a round-to-

round dispersion which may even be desirable. The effect of slight con-

figurational asymmetries is treated in Ref. 13.

The error introduced by the assumption that aerodynamic forces

and moments can be represented by a first-order Taylor's series is

more important. The Taylor's series assumption implies that the

aerodynamic forces and monoents are continuous functions with all de-

rivatives, but the characteristics of fluid flow tend to discount this

assumption. Instantaneous transitions in flow are observed, such as

a breaking away of the flow from a particular location near the nose of

the projectile as the yaw angle increases. This suggests a discontinuous

nature for aerodynamic forces and moments. Also, the assumption

that forces and moments are linear in X is violated in practice.

There is, fortunately, a way around these difficulties. A close

examination of the arguments of symmetry reveals that there is no

contradiction if the aerodynamic coefficients (the K's) are allowed to

vary with products of the form XX, X•, X4, and 4. These products

are invariant under rotation of coordinates about the projectile longi-

tudinal axis and so are the aerodynamic coefficients. Measurements,

in fact, show a variation of the aerodynamic coefficients with

XT = sin 6, but no significant variation with the three other products.

It is, accordingly, convenient to drop the Taylor's series assumption,

but to retain the equations derived from it as a convenient notation in

which the aerodynamic coefficients are allowed to vary with sin2 6.

Should the need arise, additional correction terms which possess the

appropriate symmetry may be added.
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The assumption that aerodynamic forces and moments depend only

on velocity, u, and angular velocity, w, is subject to question. A pro-

jectile may conceivably reach particular values of iý and Z by means

of a different history of motion. In this instance, the flow pattern of

the air around the projectile and the resulting aerodynamic forces and

moments may be different.

Aerodynamic forces and moments are dependent upon the pattern

of flow of 1.he air mass past a projectile whereas the pattern of flow is

in turn a function of the history of motion of the projectile. Presumably,

the past history of projectile motion can be reconstructed from knowl-

edge of u and w and all time derivatives of u and w at a given instant.

If this is so, it follows that the pattern of flow, and hence the aerody-

namic forces and moments, are functions of 11 and : and all time deriva-

tives of u and w. Projectile acceleration and angular acceleration are

included in the generalized force system developed in Ref. 10. This

system contains the following terms:

f pd Zu 2 [1IK N +ivK F1x+ I v XF + iK1 S

+ (-K + i 56)

Iv~xFA~i~sA~t k'+i•+~~'1

vKTA iKMA +iuQ 1

+ j-K •A+ ilKxTA j + i---u ( (57)
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is the component of the angular velocity of the xl,x,,x 3 coordinate
system in the x 1 direction, and new ballistic coefficients bear the addi-

tional subscript A for acceleration. These equations differ from those

of Ref. 10 in that u replaces uIV

Reasonable assumptions as to the size of the acceleration coef-

ficients (Ref. 10) lead to the conclusion that they were all negligible

except for K In fact, an approximate solution of the projectile equa-

tions of motion reveals that free-flight test range measurements for KH

actually yield KH - K MA rather than K There is no way to separate

KH and KMA in such measurements.

In conclusion, it should be remarked that these weaknesses in the

development do not necessarily imply that ballistics calculations are of

insufficient accuracy to be useful. The point is, rather, that ballistics

calculations may not be as accurate as one might expect if one is un-

aware of the weaknesses.

9. The Aerodynamic Notation

As an aid to the free exchange of information between the aero-

dynamicist and the ballistician, aerodynamic notation has been adapted

to projectiles with rotational and mirror symmetry (Refs. 18, 19, and

20). The orthogonal right-handed coordinate system usually employed

by the aerodynamicist is a system fixed in the aircraft or missile with

the X axis along a principal axis of inertia (the longitudinal axis) and

the Y axis parallel to the span of the principal lifting surface (out the

right wing). Components of the aerodynamic force and moment in this
system are

1 ~V2 SxL

Ip2 SCx L = !PV2SdC1

2 1 2
Y = LpV 2SCY M = 1pV2SdC

Z _1 P V2SC N 1P 2 d2 Z N = pvSdCn
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where X, Y, and Z are components of force, and L, M, and N are

components of moment. V is the projectile speed, S is a reference

area, and d is a reference length. Only one refere~nce length is used

for missiles, contrary to standard usage for aircraft. Iii the present

treatment, the reference length, d, is the projectile diameter and the

reference area is

S- d2

Standard notation for components of velocity and angular velocity in the

X, Y, and Z directions are, respectively, u, v, and w, and p, q, and r.

The orientation of the velocity V in the X, Y, Z coordinate system is de-

fined by the angle of attack, a, and the angle of sideslip, P, where a is

measured about the Y axis and p is a rotation about the Z axis. For

small angles,

w V
a w-7 and = V

Nomenclature ior the drag and lift forces is

=1 2Drag = pVZSCD

Lift = PVSGLa

and that for the spin deceleration, or damping-in-roll, is

1 =pV 2Sd - C 1 p

The normal coefficients CV, CZ, Cm, and C are assumed to be

functions of a, (. p, q, r, of time derivatives a, 3, 4, and ý, and are

expanded in first-order Taylor's series in terms of these variables.

The linear force and moment coefficients which have counterparts in

the K notation are defined by the following relations:
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Cy = - Cy +Cyr 2V Yý 2V 4V2

+ c pd C pd qd
Ypa ZV Y• pq NV ZV

pd a• pd 2

+ Cypa zv-- 2 C Yp TV- 4V2

2qd &d •d

C = zaa +Czq C a +cZ4 4Vz

z Za Zq2v zaZq 4V 2

odpd rd
-d CZ V?Zpp3 ZV Zpr ?V ZV

+C pd Pd C pd rd:+ p z-W 2v - zp TV 4V2

=c a + - _ d 4d 2

Cm ma + C -- +C
mq 2V tA 2 v Cmql

pd pd rd
mpP "-- + Cmpr pV rV

+ p _d P d +C pd ;" d'

mpp ZV ZV mp 2VV 2

C C + c rd +c ýd +C - d2

n np nr 7V + 2-V nr 4

pd+ pd qd
npa 2V npq 2V 2V

+ C pd -d + c pd d2 2

npaLZV ZV npq ZV 4V2
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Terms which have been left out of these expansions are -l'.ninated by

the same arguments of symmetry used in the development of the K

notation, so il is convenient to ignore them here.

The notation herein differs somewhat from that of the references,

and indeed the notation is no# in ag, ement between references. The
nomenclature herein has been chosen so that definition of coefficients,

particula.ly signs, are in agreement with those of Arnold Engineering

Development Center. This is discussed below.

The aerodynamic coefficients above are sometimes referred to

as aeqrodynamric derivatives; for example, a notation such as

8C y
Cypa 3 (pd/2V) 8aL

is often seen. This notation is strictly correct only if Cy is indeed a

linear function of (pd/ZV) and of a.

The Y axis was defined as being parallel to the span of the princi-

pal lifting surface for a missile which has such a surface. For a mis-

sile with an angle, 0, of rotational symmetry, there may be no such

unique surface, and for a shell, 6 can be any angle. The Y axis direc-

tion is not uniquely defined.

If it is assumed that the projectile has 90-deg rotational symmetry
0(0 = 90 i, thi,"t symmetry can be exploited by means of two coordinate

systems, e.g.. XZ Y, Z and X', Y1, Z' differing by a rotation of 90 deg

aboit the X axis. It follows that the equations above are valid for both

systems and that

F' =F G' G
Y z y Gz

F' =-F G' -G
z Y z Y

q = r a.' =-

"r =-q a' =
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_.e relations between forces, moments, angles, and angular rates de-

fined in the two coordinate systems, Utilization of these relations re-

veals, lor example, that

GZcL =GCy1

Table II containr a list of all such relations. Because of the lack of

unique Y and Z axis directions, subscripts Y and Z are often replaced

by the symbol N (for normal) and m and n are replaced by the symbol

M. This notation is also included in Table II, and is called the aero-

ballistic notation in Ref. 19.

10. Comparison of Ballistic and Aerodynamic Notations

To compare ballistic and aerodynamic nomenclature, it is con-

venient to use complex number notation. It follows from Table II that

C + iCZ =

ipd C Pd C (q+i)d- [Nct - V Npa (P +N [p3÷a - CNpq - CZ V

Cm n

C pC__ -[pd C (q + ir)d
C M1a - ic MCI (P + io.) + Mq Z-- Mpq ZV

[ l i CMd i C I ( pj i d [ C M q P p -V ] ( Vj ( i d÷ i( 5)2

+ -V + - i- CMpq (59)
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Table II

Equivalent Aerodynamic: Coefficients

C Zq C Cyr c CNq

c - C c

Zq Yr C.

- -c C
czp-Yp'a NpcL

C Zpr c 0 Ypq c 0 Npq

cZPP YP& Npak

Gp ypq cNpq

'ma. - np c Mai

cmq cnr GMq

C = -C aC.ma.n ma.

crq 4nro Mq

cmpj3 c npa c Mpa.

c npr -Cnpq cMpq

mpj npa. Mpa.

C -C , Crrpi npq MPq
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Also, it is evident that, for small angles,

3 + i a X

and

( +i&)d ~id X'
2 V Fu -T

where the prime denotes differentiation with respect to arc length, s,

where

t

s V .dt

Also,

(q + ir)d - + iW3 )d

ZV 2u

and

2
(4-t iid = +

4Vz 4 Z V 4

By comparison of the equations above with the corresponding Eqs. (56)

and (57), involving the ballistic notation, a one-to-one correspondence

can be made between the aerodynamic coefficients and the ballistic

coeffieients. This one-to-one correspondence is shown in Table III.

Corresponding coefficients are not necessarily equal; if the C notation

is used, it should be adopted in toto.

11. Arnold Engineering Development Center (AEDC) Notation
Assume measurements of aerodyramic forces and moments are

made in a wind tunnel in which the mot:on of the projectile model is

constrained such that there is no sideslip and there is no rotation about
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Table III

Comparison of Ballistic and Aerodynamic Notations

KD 1 C

KL 8La

KN •cNa

KF I-Npa

KXF 32 CNpq

KS CqKS I---6- CNq

K ~itKNA -- GN&

KFA R Npit

i CNKXFA T- Np4

KSA 32 CNp

KA I G

KM C
K Ca

iKT - I---- C Mp

KXT - - Mpq

C

HT Mq

KMA I C

KTA -1-6- Cm
TA 32 Mpa

KXTA -64 Mpq

XHA - -•- CM•
K40
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the Z axis, i.e., such that = 0, r 0, and = q. (The X axis is taken

to be at an angle a above the relative wind vector, the Y axis is taken

to be horizontal and out the side of the wind tunnel, and the Z axis is

directed downward and at an angle a from the vertical.) Under these

constraints and with negligible terms excluded, the aerodyaamic equa-

Lions become

pd
Cy = y•Z

C = -C aa

C = C a+(C + *)qd
m ma. mq ma. ZV

C = pdn npa ZVT

With one exception, these relations define the notation used at AEDC,

where CNa is used in place of CZ . It is also evident that Cmq and

Cm. cannot be measured separately in a wind tunnel. A similar con-

clusion has already been mentioned with regard to free-flight test

measurements since

K H K T**2 ~CmqiC,

(See Subsection 8. )

It was mentioned that the notation herein was chosen to be in

agreement with that of AEDC. The following comments seem appro-

priate: AEDC reports (Refs. 30 through 38) available to the author

contain data for CNa., Cyl, Cma, Cmq + Cm&. and C n. Data for
the other coefficieuts (besides drag and damping-in-roll) is lacking

and for them no definite sign convention is available. These missing
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coefficients are considered to be negligible, however, and no sign con-

vention is needed. Numerical values of C Na and Cma are positive,

whereas C + C . is negative. Signs of Magnus coefficients Cypa

and C may be in error since it is difficult to determine their signnpci

conventions from AEDC reports. It is noted that AEDC does not

strictly adhere to these definitions. One should be very careful to ob-

tain correct information as to definitions of force and moment coef-

ficients from wind tunnel and free-flight test range personnel. Their

definitions may differ somewhat from those herein, and it is very easy

to get a sign wrong or, say, be off by a factor of two. Some people use

pd/V in their definitions rather than pd/ZV.

Reference 39 (Advisory Group For Aerospace Research and

Development, AGARDograph 121) contains methods of obtaining aero-

dynamic data by use of wind tunnels. The notation herein agrees with

that defined in Ref. 39 except for CNq which is negligible.

The notation herein differs somewhat from that of Ref. 40

(Ballistics Research Laboratory Memorandum Report No. 2192). The

major difference is in the use of pd/V instead of pd/2V for the dimen-

sionless spin.

12. Modeling of Aerodynamic Data for Trajectory Computations

In previous subsections, expressions have been developed for

aerodynamic forces and moments in terms of the aerodynamic coef-

ficients, but nothing has been said about the form of these L -icients

other than that they are functions of M, R , v, and 6. Attempts have

been made to derive expressions for these coefficients from fundamental

theory, but in practice, it is necessary to measure them for various

combinations of M, R e v, and 6. Such measurements are made in

wind tunnels, or by means of free-flight tests (Refs. 30 through 47).

Data thus obtained is tabular and a problem arises in the utilization of

this data in trajectory computation on a digital computer. Means of

multi-dimensional interpolation between data points is required. To

ascertain the extent of the problem, it is advantageous to examine the
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tabular data and determine as much as possible about the functional

form of the aerodynamic coefficients.

12. 1 The Functional Form of the Aerodynamic Coefficients - As

has been stated, the aerodynamic coefficients are functions of Mach

number, M, Reynolds number, Re, dimensionless spin, v, and the yaw

angle, 6. Fortunately, variations with R are slight and usually can bee
ignored. The expression for R is

e

pud MVsd
e 1a 'a

where q a is the kinetic viscosity and Vs is the speed of sound. Since

both Vs and 1La are functions of altitude, Re varies with altitude and

attempts have been made to model certain aerodynamic data as such

(Ref. 48). Unless extreme variations in altitude along a trajectory are

anticipated, however, Reynolds number variations may be ignored.

This may be regarded as the best policy unless experience proves

othe rwis e.

The effect of dimensionless spin, v, upon the drag, lift, and over-

turning moment coefficients, KD, KL, and KM9 respectively, is be-

lieved to be negligible. That there is a slight effect is demonstrated

in Ref. 7. Until proven otherwise, KD, KL, and KM are assumed to be

independent of v. The damping moment coefficient KH is also

usually modeled as such. On the other hand, the Magnus coefficients,

KF and KT, are both functions of v and should be modeled as such. The

spin deceleration coefficient, KA, is presumably also a function of v,

but K A is hard to measure and little data may be available. This poses

somewhat of a dilemma since lack of knowledge of KA in trajectory

compuitation implies a lack of knowledge of v. Extensive modeling of

K F and KT in terms of v is then of questionable value.

All coefficients are functions of M and 8, although adequate data

for modeling may be hard to obtain. This is particularly true of KF

and KT since they are functions of three variables, M, v, and 6.
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In summary, the aerodynamic coefficients may be written in

terms of their independent variables as follows:

KD = KD(M' 6)

KL = KL(M, 6 )

KM = KM(M, 6 )

KR = KH (M, )

K F = KF (M,v,6)

KT = KT (M,v,6)

KA KA (M,v, 6 )

All other aerodynamic forces and moments are considered to be negli-

gible, and are excluded fromi consideration.

12. 2 Polynomial Curve Fits - Modeling of aerodynamic data for
1-uL1*puter use can be accomplished by fitting low-order polynomials in

two or three variables to the data. The drag coefficient can usually be

expressed by the relation

KD= KD (M) 11 + KD6Z (M) sinZ 61

in which KD (M) is the zero-yaw drag and the term in the square brack-
0

ets accounts for non-zero yaw. For small-yaw applications, sin 6 is

sometimes replaced with 6, whereas for high-yaw situations, more

terms in sin46, sin6, etc. can be included if they are needed. KD (M)

and KD6 2 (M) may be fitted in sections in powers of M or 1/M. If M 1,

M , ... ,# M are numbers such that

M < M2 < < Mn

for example,
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b.KD=a.+ 1
D M

0

provides a good fit to KD over the interval
0

M. < M _"A M i+

if the interval is not too large. On the other hand, an expression valid

for high Mach numbers has been found useful. It is

22

(a + bM) -1KD -

This can be obtained by curve fitting the "Q function" (Ref. 49).

Q + +M2KD = a+bM
0

The lift coefficient, KL3 may be handled in a similar fashion. In

the interval M. < M_5 Mi+, and sin 6. < sin 6 :s sin 6 i+ one can write,

for example

K (a0+ a M+... + a Me)

+ (a0 + b1M + ... +b M' sin 6

+ (cO + c 1 M + -.. + c Nn) sink 6

Similar expressions can be written for KM and KH.

s KF1 KT' and KA are functions of three variables: M, v, and

sin 6. Polynomials may be constructed for them in much the same

manner.
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* .cal plots of KD vs M and KD vs sin 6 with M constant are
0

L shown in Fig. 4. Plckt of ,ther aerodynamic coefficients may be

found in the literature. See, for example, Refs. 30 through 40. Three-L dimensional plots of some of the coefficients are shown in Ref. 50.
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1 2 3 4
M

(a) Zero-Yaw Drag Coefficient

KD

sin 6

(b) Plot of KD vs sin2 6 for M Constant

Figure 4
The Drag Coefficient
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SECTION III

A STUDY OF PROJECTILE ANGULAR MOTION

1. General

The system of aerodynamic forces and moments has been sub-

jected to a comprehensive examination in the previous section and it

is convenient at this point to investigate the effect of these forces and

moments upon the motion of a spinning shell. There is no hope of ob-

taining a closed-form analytical solution for this motion, so it is appro-

priate to solve simplified sets of equations to gain insight into the be-

havior of projectile motion. The starting place is to solve the equations

of motion for the case where there are no aerodynamic forces and

moments acting upon the shell. The main inte-est, here, is in the

angular motion, since the translational motion is simple. The next

step is to solve the equations of angular motion for the case where the

only torque acting is an overturning moment. These two simplified

examples aid in understanding the precessional and nutational motions

of a projectile. The second case involving the overturning mo'ment is

mathematically equivalent to the motion of a spinning top acted upon by

gravity, as is treated in many text books on Mechanics (Ref. 51, for

example). The next step is to compare the motion of a projectile acted

upon by an overturning moment with epicyclic motion, which is some-

times used to approximate projectile motion. The addition of damping

to epicyclic motion completes the picture, more or less, and gives

rise to an understanding of dynamic stability.

With this background in mind, it is possible to obtain an approxi-

mate solution for the angular motion of a spinning shell by use of the

complex notation of Section II. The six-degree-of-freedom equations

of motion are set up in the complex notation and solved under simplify-

ing assumptions as to the importance of certain terms with regard to

size. Slowly varying terms are assumed to be constant, so the solu-

tion should be valid only along a short section of the trajectory. The

solution thus obtained is epicycL..
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This section is closed with a discussion of windage jump and drift,

both of which result from the angular motion of the projectile and forces

normal to the trajectory. Windage jump must be considered in situa-

tions where the angle between the gun and the air craft velocity vector is large.

Drift is not usually considered in air firings, but it may be important

for new rounds under development at long ranges.

The material in this section is entirely tutorial. The equations

derived using the complex notation are not suitable for numerical intee-

gration, and equations appropriate for that purpose are derived in

Section III. A knowledge of this material is essential to the under-

standing of projectile motion, windage jump, and dri't, however.

Z. The Equations of Motion

TV-e six-degree-of-freedom equations of motion are derived from

-..nls laws, which are

du F + g

where m is the projectile mass, g is the acceleration due to gravity,

and H is the angular momentum. The x 1 ,x 2 ,x 3 coordinate system of

the projectile is chosen in an incompletely specified manner so that

the longitudinal axis of the projectile coincides with the xI axis, but

the projectile is free to rotate with respect to the x 2 , x 3 axes. The

angular velocity of the xl,X2, x 3 coordinate system is I and it follows

that

Wz 2

3 3
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[The axial and transverse moments of inertia of the projectile are

A and B, respectively, and, with respect to the x 1 ,x,,x 3 coordinate

systern

H= x AI +x Bw +; BW (60)
1 1 2 2 3 3

where xI, Iz. and ;3 are unit vectors in the indicated directions. The

time rate of change of a vector C in a rotating coordinate system with

angular velocity U is given by

S= c+ax i (6)

where a dot above the arrow indicates a time derivative measured in

inertial space and a dot below the arrow represents a time derivative

observed in the rotating coordinate system (Ref. 51). It follows that

m(&1 + Wzu 3  Zu) = FI + mg (62)

m(& 2 + 3Wu -Q u3) = F + mg (63)
S3 1 13 2

m(&3 +121u _ -z u I = F3 +mg3 (64)

M) I = G (65)

B( 2 + W 3Aw I _ Q 1 B 3 = -BG (66)

B 3 + 0 1Bw z _ W2Awl = GA3 (67)

Use has been made of Q z = w and S13 = W3" The set of angular motion

equations will be selved for the case where G = 0, and for the case

where G - G = 0 andG3 = M sin 0. This will be followed by a dis-

cussion of epicyclic motion, damped epicyclic motion, and dynamic
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stability. These solutions should give the reader sufficient insight

into the angular motion of a projectile tc understand later develop-

ments.

3. Torque-Free Motion

It is of interest in passing to ascertain the motion of a projectile

when the aerodynamic torque is zero. In this instance, the angular

momentum vector H is constant in magnitude and direction, and it will

be convenient to choose a coordinate system such that the x axis lies

along H (Fig. 5). In such a system, the motion of the projectile is

particularly simple.

In Fig. 5, E is the angle between the projectile x 1 axis and x axis,

and f is the angle between the y axis and the plane containing the x1 and

x2 axes. The angular velocity of the projectile is

S- + + x3

where ý is the rate of change of the orientation angle of the projectile

measured about the x 1 axis, and I is a unit vector in the x direction.

B ut

= xI cose - x sinGx 1z

and the components of 0 in the x 1 ,x 2 ,x 3 system are

C= L+4cosO (68)

W2 = -sin 0 (69)

W =e (70)

The components of angular momentum are
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Figure 5

Coordinates for Studying Angular Motion
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H = 1 (71)

H2 = Bw (72)

H3 = Bw3 (73)

Since x 3 is perpendicular to H, it follows that

H = Bw = B6 = 0 (74)

so

3 
0

and 0 is constant. Components of

H = X1AI + x2Bw2

resolved along the x and y' directions are

Aw1 cos 0 - Bw 2 sin 0 = H (75)

Aw sin 0 + B(. cos 0 = 0 (76)

Since e is constant, w1 andw 2 are also, because this set of equations

can be solved simultaneously for wI and w in terms of 0 and H. Since

W is constant, Eq. (69) shows that

sinO (77)

is constant, and it follows from Eq. (68) that . is also since w 1 is con-

stant.
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The analysis is almost complete for a projectile which is acted

upon by no aerodynamic torques. It precesses about its angular mo-

mentum vector with constant rate, 4. An expression for $ in terms

of H is required, however. Since L3 = 0, it follows from Eq. (67)

that

alBc2 - 2Aw I = w2(B-1 1

and since, in general, w2 • 0

A
= A-•1(78)

But Q1 is the angular velocity of the x 1 ,x 2 1 x 3 coordinate system about

xI and

so, from Eq. (68)

Q = cose (79)

From Eqs. (75) and (76)

A = H cos 0 (80)

From Eqs. (78), (79), and (80), it follows that

H (gj)
B

It also follows that
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W Co (82)

H
S2 -- B-sin8 (83)

so W1 and w are given as functions of 0.

4. Motion Under the Action of an Overturning Moment

A second example of interest is the motion of a projectile under

the influence of an overturning moment. Figure 5 and the notation of

the last subsection can be used, but H is no longer along the x axis as

shown. The overturning moment is always perpendicular to the plane

containing xI and x and is taken to be

G3 = M sin E (84)

where M is a positive constant.

This problem is mathematically equivalent to the motion of a spin-

ning top under the influence of gravity, in which case M = mgI , where I

is the distance from the top center of mass to the pivot (Ref. 51).

By Eq. (65), withG1 = 0

HI = Aw (85)

is constant. Also, since G3 is perpendicular to x, the component of H

in the x direction,

Hx = Aw 1 cos 0 - Bw sine (86)

is constant. These last two equations yield

S~HI cos09- H

S 1x (87)
B sin 0
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and from Eq. (69)

H cos 0 - H1p_ x (88)

B sin e

From Eqs. (68), (85), and (88)

H HI cos 0 -H
+ B n + x cos 0 (89)B sin e

These expressions for 4 and Lj are dependent upon 0 alone. An expres-

sion for 0 in terms of 0 can be derived from consideration of the energy.

The rate of doi.g work is G - (, and from Eq. (61),

H + d+ X = G

It follows ,-hat

H = (H + QXH) = HX =Gfl

since

1 •Z •3

-(ax fl) WI 'z W 3 =0
A01 3 z B 0

Aw w2 Bw3

But, according to Eq. (60)
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t*

H A = + Bcgw + B(w 3

- F 2 ~Aw + Bu + B 3

and from Eqs. (70) and (84), and since G1 G 2 = 0

G = Gw = 0M sin0 = -- M cos 0

Then

d 1 2 2 2 d
t-fiAAw +Bw 2 +B )= -3-M cos 8

and it follows that

_( +) -M cos 0+E' (90)f A01 2 BZ+B3

where E' is a constant. Since uI is constant, this expression may be

written as

1B (w2 c +w + M1cos0E I = E (91)
Z2\2 3 2 1

where E is a constant. E', of course, is the total rotational energy of

the projectile, and E is the energy associated with the transverse

motion. Solution of this expression for w yields

z ZE 2M 2
O3 = -B B cos w2

and from Eqs. (70) and (87),

57

.~~~. .... = • , . = . . ...



ZE 2M (HI cos ) - H(x

This is the desired expression for 0 in terms of 0. With the substitution

w = cos e (93)

and with rearrangement, it can be put in the form

*2 2 2w (I - wl)(a - Pw) -(aw - b) F(w) (94)

where a, P, a, and b are constants given by

a = 195)

B
=ZM (96)

H1
a = 1 (97)B

H
x

b = (98)

It follows that

w

t ( (99)

w 58'1w)
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A solution for t may be found in terms of elliptic functions accord-

ing to Ref. 51, but such a solution would serve no particular purpose

here. It is sufficient to make certain observations concerning the varia-

tion of 0 with time. F(w) is a cubic and may be plotted as shown in

Fig. 6. For large I w [, the dominant term in F(w) is pw , and since

p is positive, F(w) is positive for large positive w and negative for

large negative w. For w = J 1, F(w) equals -(±a - b)2 and is negative

(unless b = a or b = -a). It follows that the plot of F(w) vs w must have

the characteristics shown in Fig. 6, with two roots in the region

-1 < w < 1, and a third root in the region w> 1. The physical motion

of the projectile can occur only if F(w) is positive, and this occurs

between wI and w 2 . Otherwise, 82 would be negative and 6 imaginary,

or else cos 0 would be greater than zero, which is impossible. Thus

w =Cos 0< cos 0f= cos 0?= ww1 =o 1- 2_

or

0 2

The angles 01 and 02 are "turning angles" at which

6 = ±,F(cos 0)

changes sign. When 0 reaches 01, 0 changes sign and approaches 02;

0 changes sign again at 02 and 0 approaches 0 This motion is cyclic,

and typical examples are sketched in Fig. 7 for different values of

parameters a, P, a, and b. These sketches represent 0(t) vs 4(t) in

polar coordinates as t varies. The projectile is observed to move with

a relatively slow precessional motion about the x axis. On top of this

precessional motion, a faster "nutational" motion is observed as 0

moves back and forth between 01 and 0 2
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F(w)

/11

Figure 6

Plo' Showing the Characteristics of F(w) vs w
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(a) b - a cos 0 > 0

0 2 ~~~fore01 -2 Zi

(b) b - a cos 0 = 0 at wvhere the

motion stops instantaneously

(c) b - a cos 0 changes sign
between 01 and 0 2

Figure 7

Typical Examples of Precessional and Nutational Motion
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The motion shown in the three examples of Fig. 7 is explained

as follows. Equation (88) may be written

b -aw

1 -w

where a and b are determined by initial conditions. In Fig. 7(a), ; is

positive, 4) continuously increases, and the curve is tangent to both

the inner and outer circles. In this case, b - aw > 0 for all w between
1@

wI and w2 (or for 0 between 01 and 0 ). In Fig. 7(c), changes sign

between 01 and 9Z. Clockwise motion is exhibited at 0 but counter-

clockwise motion occurs at 0 In this case, b - aw = 0 has a root

betweenw, and w ; i.e., w,<b/a< w. InFig. 7(b), b-aw =0at0 , in
i *2 L~ 2*n~g

which case both ; and 0 are zero at the same time, the motion stops

instantaneously, and a cusp touches the inner circle. This is not an

exceptional case, as one might think,since the values of a and b are

determined by initial conditions. At the instant a shell is fired from a

stationary gun, ; = 0 = 0 and the expected motion is that of Fig. 7(b).

5. Epicyclic Motion and Dynamic Stability

A type of motion which approximates that described in the last

subsection, and which is sometimes used to approximate the angular

motion of a projectile, is epicyclic motion. If a wheel is attached to

the rim of another wheel, as shown in Fig. 8, a point P on the rim of

the first wheel executes epicylic motion. From Fig. 8 it is seen that

the coordinates of P are

o = A cos w t+A cosw t = I0I cos4)y p p n n

0 = A sin w t +A sin. nt = 108 sin4
z p p n n
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Figure 8

Epicyclic Motion. The x, y, z Axes are the Same as

in Fig. 5 with the x Axis into the Page
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In terms of complex numbers

i( t i'n) t
0 = 0 +ioz =A e p +A e =n 0ee (100)ypn

Subscripts p and n stand for precession and nutation, respectively.

A better approximation to projectile motion is provided if A and

An are damped, that is, if

A =A e

p po

-•*nt
A A e

n no

so

0. = Apo e p + A noe n t (101)

In this case, the arms Ap and An continually get shorter and the motion

is similar to that sketched in Fig. 9. This motion is typical of a dynam-

ically stable projectile. The criteria for dynamic stability are

p > 0 and n > 0 (102)

Damping results from the inclusion of the damping moment

G =- DCT (103)

where D is assumed to be constant and

wT = X 2 , 2 + x 3' 3  (104)

The differential equations for 2 and 3 with the overturning and damping

moments included are
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Figure 9
Damped Epicyclic Motion
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Bc 2 +(Aw 1  BQ I W.3 =- -I (105)

B( 3 " ( 1 W B~}2 = -Dw3 + M sin 0 (106)

Obviously, the damping moment opposes and tends to reduce the angular

motion.

6. Complex Notation

The equations of motion can be written in terms of the complex

notation of Section II, and an approximate solution can be obtained

(Refs. 1, Z, 3, and 16, for example). As in Section II

u + iu32 3

(W2 + i 3)d

Li

Time derivatives are transformed into derivatives with respect to arc

length, s, measured in calibers, where

t

S u dt (107)

0

Differentiation with respect to s will be denoted by a prime, e. g.,

du1

"- = du (108)

Upon utilization of Eqs. (44) through (47), and Eqs (62) through (67),

the equations of motion in complex notation become

d 3 g Id
=l iP + - (109)

u 2 m DA +
u
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XI 2~~i] - ,
L+ + O l x -i --

-: m L-KN + iVKF]k + ] (110)

3 ni2-- v - P mdZ
V' +-- =I pd vg - K(11

u m A A

IL + - - -s-V +i

3 z ~
pd _ad'i [)UvK i KMXVKHI (112)

Aerodynamic forces and moments which are considered negligible have

been deleted.

It is convenient to utilize the equation of translational motion which

corresponds to the direction of _u. It is

mu = -pdu K + mg (113)

where gu is the component of g in the direction of ui. With the sub-

stitution

-U- (114)

Equation (l 13) becomes

ul d3 g ud
p KD + -2 (115)
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This equation can be used to eliminate u'/u from the equations for k'

and 1L'. Upon making the substitutions

u= cos 6 (116)u

and

J d 3 KX (117)

in which X is any of the subscripts D, N, T, etc., Eqs. (110) and (112)

be come

k' +[JN - JD - ivJF + g i ] - i -g 2  (118)

Fd? [md iJ2 gud
~ -~ vTiM]X + -~-J D+ -

u

- v + i - 0 (119)

Also, the equation for v' becomes

E A A -JD÷ (120)

7. Magnitude of Aerodynamic Forces and Moments

It is of interest to estimate the magnitude of the aerodynamic forces

and moments to acquire a feel for their effect upon projectile motion.

Accordingly, the aerodynamics of the 20-mm, M56 round will be used

(Refs. 40,and 52 through 54). For the 20-mm round,

M = 0. Z2lb

A - 0.00013 lb ft2
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B = 0. 00096 lb ftZ

d = 0.0656Z ft

If firings are made at sea level,

p = 0. 076475 lb/ft3

and parameters needed in the equations of Subsection 6 are

3 4
T- 0.982 X 10m

md2 =S- 7.28

md2
- 0.986

A"9- = 0.135

Aerodynamic data at M = 3 for small yaw is

K D "0.14

KN 1.2

KF -0.1

KM 0.7

K H -•2.0

KT -0.05

KA "0.01

69



Except for KF and KA, these values were taken from Ref. 53. The

value for KF was calculated from the curve fits in Ref. 54. No data is

readily available for KA, so a more or less typical value is used. The

value for KH i- the value obtained when the bal. rotor fuze (Refs. 52

and 53) is removed. The measured value with the ball rotor in place,

at M = 3, is KH -0.05.

The value of projectile velocity corresponding to M - 3 at sea level

is

u = 3350 ft/sec

A value for v at the gun muzzle can be obtained from a knowledge

of the projectile muzzle velocity, VM, and the twist of the rifling, n,

where

VM = 3300 ft/sec

n = 25. 586 calibers per turn

(Ref. 54). The projectile turns through one revolution when it travels

a distance nd in the barrel, so

W~ 21r
V -- i (121)

M

and the initial value of wI is

W1 = 12,400 rad/sec

The initial value of v is

•1d

v = u - 0.24

The terms due to gravity are less in absolute magnitude than
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g' = 1.88X 10-7
2

u

while values of J or vJ are

jD 1.4 X 10-
5

N - .2 X 10- 4

vJF 2.4X 10- 6

M 7 7X 10-i 5

$ H 2 2X10-4

vJT --. 2 X 10-6

i A -10-

Using these typical values, it is seen from Eq. (120) that v' is

small.

mdz gu d -5
A iA- JD+ - 0.7X 10
A A D u2

The solution to

vi = -0.7x 10-5

V

should be valid at least for small values of s and is

-0.7X 10- Sv = v e
0

It is clear that v does not change much over a trajectory.

In the equation for V', Eq. (118), the leading terms in the coef-

ficient of X are
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J iVJ+ i ld

JNivJF÷i -u

JD is about 10% of JN and the gravity term is completely negligible;

ivJF is retained because real and imaginary terms are treated sepa-

rately. The leading terms in the coefficient of ý± in the ý±' equation,

Eq. (119), are

mdZ J i A + 1d

B H BE7 u

The gravity term is negligible, and JD is small compared to the damp-

ing term containing JH* The set of equations

X [ + N- iVJF + i--ld X (- 2 +i = 3 )d (12)

+ 2 vJT + iJM X

+ -- Bi:v+i Si ] 0 (123)

with v constant as a candidate for approximate solution.

8. An Approximate Solution

To solve Eqs. (122) and (123) with v constant, a complete speci-

fication of the rotating xl,X2 ,X3 coordinate system must be made so

that Q 1 may be defined (see Subsection 2). This can be done in a number

of ways, but for present purposes, it is convenient to define the xl %ZSx3
system 0o Q I = 0. The details are not required, however, since only a

partial s:lution of projectile motion is desired. Approximate equations

for X and ý, will be derived, whereas the development of equations for

the direction cosines relating the x ,x ,x 3 coordinate to inertial space

will be omitted.
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Since the influence of gravity over a short distance s along a tra-

jectory is slight, the term

(g2 + ig 3 )d

2
u

will be omitted.

Also,

I = cos 6

is approximately equal to 1 for reasonably small yaw angles, e.g.,

cos 6 = 0. 978 at 6 = 120, and so we set

I = 1

The rest of the coefficients are slowly varying and it will be assumed

that they are constant. The solution thus obtained will not be exact,

but it will show the character of the true solution. The equations to be

solved may be written

V' + aIX + aZt = 0 (124)

'+ b1X + b = 0 (125)

where

a, = JN - i JF (126)

a2 = -i (127)

b -ad [JT + iJ (128)
SB T M

md 2 A
b md2 = . (1Z9)

2= BH-
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The solution is straightforward (see Ref. 55). Set

X Xe 1s (130)

ks(131)

where Xo, ýo, and k are constants. Substitution of these expressions

into the differential equations yield-

(k + aI)k° + a ?0 = 0 (132)

bIX0 + (k+b = 0 (133)

and nonzero solutions exist for Xk° and go only if the determinant

k.+ a a2

(134)
b1 k + b2

equals zero or if

k 2 + (a1 + b2 )k+ aIb2 - a2b1 = 0 (135)

The solution of this quadratic equation is

-(a 1 + b 2 ) d(a 1 + b22 2 4(a 1 b 2 -a 2 b 1)
k - 2 (136)

74



Now

a +b = JNivJF + JH - i V

mdA A

"+JN+r JH - v (137)

and

(a 1 + b 2) - 4(aIb 2 - a 2b1 ) = (a1 - b )2 + 4a b1
[J md J A12 • 2]2

= [JN- B Al - mi 2  JT+iJM

mc AiV i i

2iv JN - H 2  JT (138)

where negligible terms have been deleted. With

m2

a N + md- (139)

b = A (140)

= 4 md2 (A 2  (141)B

e 2v . A m JH 2M JT} 1142)B N v NB- B H-

we have

'1 2k = -a+ ib T + (143)
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According to DeMoivre's theorem (Ref. 56)

4c+ie= V.'c+e- cos - + i sin a (144)

where

Cos a - (145)

2 .2c + e

sin a e (146)
1]c2 . e2

But

COS 1 fI + Cos a (147)

sin-! 1-cos a (148)

and so

4c ,+ie + e + c(+e2+ c) ,-, (,+ ct (149)

(It has been assumed that a is in the first quadrant; if not, appropriate

changes must be made in the signs of the radicals in Eqs.(147) and (148).)

It follows that

2k = -a +ib± (h+ iq) (150)

and that

-a s+i3 s -ans + i4nS
p Xe + X ne (151)
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where X and X are constants, andp n

2 (a - h) (152)

= (a + h) (153)In 2
1

= (b + q) (154)

I (b - q) (1155)P =

A similar expression exists for 4, and it is seen that the motions of X and

p. are epicyclic in the variable s. For dynamic stability, it is required

that

a p > 0 and an > 0 (156)

It is observed that I = sin 6, where 6 is the angle between the

projectile spin axis and the velocity vector, and the precessional and

nutational motion is about the velocity vector. The plane of yaw is the

plane containing the spin axis and the -cvlociiy vector ar~d so it precesses

with the projectile. Since the lift force is in the plane of yaw, aud the

Magnus force is perpendicular to it, these forces also precess about the

velocity vector.

The analysis of this section is approximate, and the results are

tutorial. A better approximation is given in Ref. 16 along with a develop-

ment of criteria for static and dynamic stability. A treatment similar to

that of Ref. 16, with slightly less general results, may be found in Ref. 1.

In passing, it is observed without proof that the condition for gyroscopic

stability is

s* > 1 (157)
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where

A2 2
s (Av/B)? I1

4(md!/B)JM 4Bpd u KM

(Refs. 1 and 16).

9. Windage Jump and Drift

Windage jump and drift may both be interpreted as deflections of

the projectile trajectory away from its initial direction of motion due to

aerodynamic forces. Windage jump is caused by the precessional and

nutational motion of the projectile near the gun muzzle, while drift re-

sults from the effects of gravity at long ranges. Whereas drift has not

been found important in the past, it may be significant for the new, heavy,

high-muzzle -velocity rounds under development.

The windage jump arises from the side forces on the projectile

and the precessional motion of the projectile about the velocity vector.

The side forces are the lift force in the plane of yaw, and the Magnus

force perpendicular to the plane of yaw. These forces would be zero if

the angle of attack, 6, were zero. As the spinnii-ig projecti-le moves down

its trajectory, the aerodynamic moments cause it to precess about its

direction of motion like a top under gravity and so the plane of yaw pre-

cesses with the projectile. The side forces are carried with Ihe plane of

yaw and the changing direction of the forces moves the projectile first in

one direction and then in another. For a dynamically stable projectile,

the angle of attack decreases (on the average) with time and the side

forces decrease. The center of mass of the projectile moves downrange

along a "spiral" of continuously decreasing radius. The angle of attack

decreases to effectively zero usually within the first 1000 ft and the spiral-

ing motion stops. The net result is that the direction of motion of the

projectile is changed by the amount of the windage jump. Equations for

the windage jump are given in Sections IV and V. An explanation of the

drift is as follows.
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At long ranges, and in the absence of gravity, the yawing motion

of the projectile would completely die out. Gravity, however, causes

curvature in the trajectory and the continually changing direction of the

velocity vector induces a yaw angle, called the yav :f repose, bt~Leen

the projectile spin axis and the velocity vector. A balance of aerod'y-

namic and gyroscopic moments causes the projectile to move with its

nose pointed slightly up and to the right tf the trajectory, a-id the effect

is to deflect the trajectory up and to the right. A treatment of drift is

given in Ref. 57.
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SECTION IV

EQUATIONS OF MOTION FOR COMPUTER UTILIZATION

1. General
The complex number representation of the six-degree-of-freedom

equations of motion derived in Section III is useful for analytical studies

of the behavior of a projectile in flight, but it is not suitable for rapid

computation on a digital computer. Two different formulations of the

equations of motion are presented in this section. The first, a matrix

formulation, can be advantageously programmed on a digital computer

for the rapid generation of trajectory tables, whereas the second method,

an Euler angle approa.h, is more adaptable to numerical studies and to

approximation. Derivations for the matrix formulation and the Euler

angle representation folloav' " Subsections Z and 3. In Subsection 4,

approximate equations are developed from the Euler angle set for the

approximate computation of trajectory tables. These equations are use-

ful when it is permissible to sacrifice accuracy in favor of speed in com-

putation. Initial conditions are not give - in this section. For computer

studies, these parameters may Le chosen arbitrarily, whereas they

must be calculated in airborne applications. Calculation of initial con-

ditions in airborne applications is treated in Section VI.

2. A Matrix Formulation

A right-handed X, Y, Z inertial coordinate system is defined as

follows: X and Y are horizontal and Z is vertical. The X,Y, and Z

coordinates refer to the center of mass of the projectile and unit vectors

X, Y, and Z are defined in the indicated directions.

A moving x 1 ,x,,x 3 system is defined in Section II with its origin

at the center of mass of the projectile. The x 1 axis is along the longi-

tudinal axis of the projectile and is positive toward the nose. The x 2

and x 3 axes are normal to x 1 but are not fixed in the projectile. The

XlX 2 ,x 3 system is right-handed and X and x3 are unit vectors

in the indicated directions. The orientation of the xi, x?, x3 system

with respect to the X, Y, Z system is given by the relation

80



SI I I
X1 1 X

x2 = I m 2  m 3  ( (159)

X 3f nI n n3

The angular velocity of the x1,x-,x 3 system is

Q] = x lf1Q I + x 2 0 2 + x 3S

while the linear and angular velocities of the projectile are

"- = x uI + z x3 u3

and

W = X WI +x W2 + x30W3

The angular momentum of the shell is

H = xAw + x Bw + x3Bu
L11 2 2 3 3

where A and B are, respectively, the axial and transverse moments of

inertia of the projectile. The equations of moton are

F = mu = m(u +a X;)

and

G = H = H + 2 XH
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L 7

A dot over the arrow refers to a time derivative measured in the X, Y, Z

system, whereas a dot under the arrow denotes a time derivative mea-

sured in the moving system. F is force, G is torque, and m is the pro-

jectile mass. The equations of motion in matrix form are

F 1 1  0 3 Q2 12

F2 m 2 + m 23 0 -Q1 u 2  (160)

3 3 ) 2 1 0 3

and

(G A 0 01

G2 0 B 0 2

G 3 0 0 B 3

3 A 0 0 W

+ 1 3 0 -l 0 B 0 ( 2 (161)

_22 Q1 0 0 0 BW3

The restriction that the x axis coincides with the projectile longitudinal

axis implies that

22 = ( !162)

= 3 (163)

a may be chosen arbitrarily. The choice 1 = I is inconvenient for

numerical integration because a very small step size (of the order of
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0.1 X 2r/W1 ) will be required. Also, we have no interest in the angular

orientation of the projectile about the xI axis. A second choice is to

constrain the x 1 ,xZ,x 3 coordinate system to move in a manner such

that the x axis remains in the horizontal plane. This choice is con-

venient since x 2 is always in a vertical plane and QI1 is small. A third

convenient choice is a, = 0.

Forces and moments are

F1 = -pd 2 u2 KDA - mga!3  (164)

F2 uKNuZ - pd uvKFu3 - mgm 3 (165)

F3 -p uKNu3 + pd 2 uvKFuZ - mgn 3  (166)

G1 = -pd 3 u2 vKA (167)

G2 = pd3 uvKTu2 + p d3 uKMu3 -pd 4 uK HWZ (168)

G3 = -pd 3 uvKTu 3  pd 3 uKMuZ - p d4uKHw3  (169)

where g is the acceleration due to gravity. The aerodynamic forces

and moments are the same as those of Section II, Subsection 5 with

negligible terms de~eted. If aerodynamic data for KD and KL is avail-

able rather than that for KDA and KN, the following expressions may be

used

KDA = KD cos L - K sinZ6 (170)

KN K L cos 6 +KD (171)
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Also

cos 8 - (172)
u

V = 1 173)
U

U 42 +~ 12 (174)
u 2 3

The aerodynamic coefficients (the K's) are functions of Mach number,

sin 6, v, and possibly Reynolds number (see Section II).

The matrix equation for the velocity is

X £ m n I u 1

S2 m 2  n 2  u 2 (175)

Z 3 m3 n3 u3

and the matrix equation for the time rates of cnange of the direction

cosines is

I m n m n 1 0 4

dT n 2  2  = 2z m 2  n2  f3 0 0)

( 3 m 3  n 3 33 m 3  n 3  -2 11

(176)

This set of matrix equations, along with the equations for the aero-

dynamic forces and moments, completely describes the motion of a pro-

jectile. For numerical solution, it has the advantage that no trigonometric

functions need be evaluated from angles (cos 6 = Ul/u) and as a consequence
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computations are fast. It also has the advantage that no division by

small numbers occurs, such as division by sin 6 for small 6. The

problem of division by small numbers often occurs in formulations in-

volving Euler's angles. But, instead of the expected twelve equations,

there are eighteen! The redundancy is contained in the equation for the

direction cosines. One might use the properties of the direction cosine

matrix (orthogonality, etc.) to reduce the number of equations, but

this has not btzn found to be advantageous. Instead, all eighteen equa-

tions are integrated simultaneously. (Actually only seventeen need be

integrated since the angle of rotation of the projectile about its spin

axis is of no interest.) NLmerical problems occur which are associated

with the direction cosine matrix not remaining orthogojnal, however.

One method of correcting this deficiency is to replace the matrix by

1.-

(A+ (A+ AT)
-"-1

where A is the direction cosine matrix and A-T1 is the inverse of the

transpose (Ref. 58).

3. Euler Angle Development

Large portions of the development given here and in the next sub-

section is taken almost verbatim from Ref. 59. Changes have been

made as necessary, however, to clarify and adapt Ref. 59 to present

purposes. Portions not pertinent to present needs have been deleted.

A right-handed, orthogonal, rectilinea , r, - , coordinate system

which is stationary with respect to the ground is defined with . mea-

sured down range, il vertically up, and . to the right as seen by a

person facing down range. A second right-handed, orthogonal, recti-

linear coordinate system 1', J', K' is superimposed on r,r,. The

two coordinate systems have a common origin 0, and the angular

orientation of P', J', K' with respect to g,-, is specified by the two

angles a and 0 (see Fig. 10). The angles ai and 0 are by definition the

azimuth and elevation angles, respectively, of the bullet vei-city
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Velocity Vector Coordinates
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vector u as measured in the ý, , coordinate system, and 1' is

always along ut. The azimuth angle a is measured from the t axis

to t', the projection of u on the horizontal plane, and the elevation

angle 0 is measured from t' to u or to 1'. The angle a is a counter-

clockwise rotation as seen from above (from the positive -n axis) and

0 is a counterclockwise rotation about K' as seen fror.i the positive KI

axis. Note that K' an.! •' are coplanar with , and • ard are horizontal,

and that 11 and J' are coplanar with t' and q.

Now, define a 1,J,K coordinate system parallel to 1', J', K' but

moving with the projectile and with its origin at the center of mass of

thu projectile. In this system, define a right-handed, orthogonal

coordinate system 1, 2, 3, (see Fig. 11). ,he 1-2 plane contains the

axis of symmetry, A, of the projectile and is the plane of yaw; A is

directed from the projectile center of mass toward the nose. The angle

4 is a counterclockwise rotation about I as seen irom 1 and is measured

in the .1-K plane from J to 2. The angle 6, the yaw angle, is the angle

in the plane of yaw between the projectile velocity vector and the axis

of symmetry, and it is a counterclockwise rotation about 3 as seen

from 3. The angle tp (not shown in the figure) is Lhe roll angle of the

projectile measured about A, and it is assumed to be a counterclock-

wise rotation as seen from A; ý is the roll rate of the projectile.

It is observed that the angles 6, 4), and p, which define the pro-

jectile orientation with respect to the moving J, 3, K system, are

Euler angles. Contrary to the notation of Section II, the 1, 2, 3, system

is attached to 1 rather than to the projectile. The A,B, 3 ccordinates

used here correspond to the xl,x 2 ,X 3 system defined in Section II.

Figures 10 and 11 show that the orientation angles of the 1, 2, 3

coordinate system are a, 0, and 4, and that 1, 2, 3, constitutes a co-

ordinate system with one axis parallel to the velocity vector ii and

with the other two axes rotating at essentially the precession rate of

the projectile. The angular veiocity of the 1, 2, 3 coordinate system

with respect tc the fixed system is

87



J

aA

B /

K

3

Figure 1I1

Coordinates of Angular Motion

I
88



t-. = l&1A1

where 1, 1K' and I1I are unit vectors along TI, K(or K') and 1, rf.spec-

tively, and a dot represents differentiation with respect to time. To ob-

tain components of 6 along the 1, 2, and 3 directions, unit vectors 1'=

and 1 K are resolved along the I and 2 directions as follows:

1 = sin4, + 1Cos

i= 1 1 sin 1 + J coso

= 1 1 sine + (1"2 cosc - C3 sindj cos 0

The equations for 1 and YK are obtained directly from Fig. 1i, but
"1 is obtained from Fig. IK. Substitution of 'K and 1 into the ex-

pression for 0 yields the 1, 2, 3 components of 9 and they are

a, = + a sin 0 (177)

a= 2 . coscj cose + 0 sink (178)

Q3 = -& sin4 cose + 0 cos4 (179)

Note that a and 0 are small since the direction of the velocity vector

does not cnange much, and consequently 0 and 2 3 are small. QV

therefore, is essentially the precession rate of the projectile.

Figure 11 shows that the angular velocity of the projectile is

+ 1 + + 136

and therefore, the components of angular velocity of the projectile

resolved along the A, B, 3 axes are
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W A = 01 cos6 +÷Q2 sin6 +4• =0 A +L (180)

WB - 1 sin6 + cos6 = B (181)

W 3 = + (182)

Components of the angular momentum of the projectile are

HA = AwA (183)

HB = BwB (184)

13 = Bo3 (185)

wherc A and B are thE axial and transverse moments of inertia of the

projectile. It is assumed that the projectile is symmetrical about its

longitudinal axis, and that the moments of inertia about all transverse

axes through the center of mass are equal.

Newton's second law for rotational motion can be written as

= H + F' X ( (186)

where G is the aerodynamic torque, and

- ( -

is the angular velocity of the A,B, 3 coordinate system; that is, 6,' is

equal to w minus the axial spin. Components of Q' along A, B, and 3

are

A = - =2A

B wB

3 w3
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and corresponding components of Eq. (186) are

GA = A A (187)

GB = B +( AwA - flAB3 18RI
B (B 3 A ~Aw 3

G3 = BW3 + ýABwB - 11BAwA (189)

Equations (187%, (188), and (189) constitute the angular motion equa-

tions of the projectile, and GA# G and G3 are the aerodynamic

moments.

Newton's second law for linear motion with velocity and force

components resolved along the 1, 2, 3 directions is

= m[•I+6 xu] (190)

and also

FI = rnm (191)

F2 = mu 3u (192)

F 3 -1rnl2 u (193)

The components of F and G may be identified with the proper

aeroJvnamic forces and moments, from Fig. I 1 and the results of
Section II, with careful attention to geometry. The xl,X2 ,X3 directions

of Section II ma- be identified with the A, B, 3 directions, respectively,

in this section, and in Eqs. (44), (48), and (49), F 1 becomes F A' F 2

becomes FB, u 2 becomes uB = -u sin 6, and u 3 is zero. If gr 'ity is

ignored for the moment, and negligible aerodynamic terms are dis-

carded, it follows that
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F A = pd2 u 2KDA (194)

FB pdZLZKN sin 6 (195)

F 3 = -pd 2 u 2 vKF sin 6 (196)

But, for the I and z directions of this subsection

F, -- FA cos 6 - FB sin6 = -pd2u2 (KDA cos 6 + K sin 6) (197)

F2 = FA sin6 + FB cos6 = pdZ u (-KDA + KN cos 6) sin6 (198)

From Eqs. (54) and (55), and when the gravity terms are added in, it

follows that

F1 = -pd 2u KD - mg sino (199)

F2 = pd 2 u2 KL sin6 - mg cos 0 cos (200)

F = du2 K
F3 -pu vK F sin6 + mg cos 0 sin p (201)

In Eqs. (46), (50), and (51) for the aerodynamic torques, identification

of the x 1 ,x 2 ,x 3 system with the A,B, 3 system implies that GI becomes

GA, G 2 becomes GB. u2 becomes uB = -u sin 6 (as before), u 3 is zero

(as before), and w 2 becomes COB. When negligible terms are discarded

it follows that

GA = -d3u2vK2 A (202)

GB = pd 3 u2 vKT sin6 - pd 4 uKHwOB (203)

G =pd 3 u2 KM sin6 pd 4 uKH (204)
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where
-Ad

V- (205)

Equations for ' and B can be obta'nee in terms of U12 and a3 from

Eqs. (178) and (179).

& cosB = Q cos Q-1 sirl

S= �2 sin4 + 023 cos

From Eqs. (192) and (193) it follows that

SCos 0 = Co F si
mu c-F 3 c2sc% - F2 sine

0 = i-F siný+F cos4
mu -2

and finally, from Eqs. (200) and (201)

a=- mcos [KF cos 4 - KL sin(ij sin 6 (206)

e = --pd'~m vK sine + KL Cosq sin6 - -- cos0 (207)
mLFJ

(In numerical integration, division by cos 0 causes numerical trouble

when 0 is near ±90 .0 From Eqs. (191) and (199)

S= p.d~u2  28
m D g sin 0 (208)

Equations (206), (207), and (208) are the equations for u in polar co-

ordir.ates. The equations for projectile position can be obtained from

examination of Fig. 10. They are
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L6

= u cosO cos a (09;

u= u sine (210)

- -u cos0 cos a. (211)

By use of Eqs. (187), (188), (189), (202), (203), and (204), the

angular motion equations may now be written as

AcLA = -pd 4u uwAKA (212)

,B• + W 3Aw0A - 11ABw 3

= pd4 uwAKT sin6 - pd4 uKHWB (213)

BI 3 + IIABw• - wBAwA

pd 3u KM sin6 - pd 4uK Il 3  (214)

where v has been replaced by the right side of Eq. (205). QA is obtained

as follows: use Eqs. (178) and (179) to calculate 02 and 0 3 then Q21

may be obtained fromnEq. (181), i.e.

a cos 6 - oB(Il= 2i B (215)
1 sin 6

(Division by sin 6 causes numerical integration problems when 6 is

small. Given Q and Q, Eq. (180) yields QA. Also, ; and 6 may be

obtaintd from Eqs. (177) and (182).

3. 1 Summary of Equations - It is convenient to collect together

the complete set of six-degree-of-freedom equations. They are as

follows:
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& co [' v K ., co. ÷ K,, sin@ sin 6

[v --du[KF sin + KL cos 4]sin6"gcos0u

m u

2 KD- g sin0

a 2 = L COS ()COS ý+ 0 sin+

0 3 = -a cos[ sin .+ K cos

-W B +0 2 Cos 6
-1 - sin 6 "-

J) A = f cos 6 +fl2 sin6

pd4 KA- AK

AAd

S - W

'I

.;

B -w3 [t-JA A

wBd

+d 3 u2 rv--- 3 d H

+ KT sin 6 - K

+ pm sin 6 -5 K
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3 3

t -- sin 0

J." osOcosa

"= u sin 0

= -u cos 0 sin a

Initial conditions are treated in Section VI.

4. Approximate Equations for Large-Yaw Computations

This subsection contains a derivation of the approximate equa-

nz ,f . otion used at Eglin Air "'-rce Base for trajectory table

,dlc.&htioi_ 1c the ZO-rnm, M5I" ro'Žni. An equivalent set has also been

•.seCn nIe ._-rnputaijn o" ;a,. le b L-, ._ F-e-. "•). Presumably, the

. trt )d c ri adýot: ý t " rounde unde. .evpltpment. Another der-

". of I.- two aop-oximat.. ,±quwcions of ar.gula.r motion can be found
A •• !(ef. t;C. °T'his derivato", i.tuite ýdious, ho:.ever, and derivations

of the (Atn equt.ions are lavking. "hc development hexe.n is that of

:'e., 59 ,th rni:.r oanges fr clpiitv and is based tne equatfons

r- tt.• last -,o-b.ection. .. eauaticns of m.ea; motion mast o0 forrnu-

T'i•h.'ason for asing these. approx-.rnate ýuations is they --au be

evaluated rni•ch -, .Lter on a digital computer than can the six-degree-of-

free'iom equations, Tne iangt,'ar inot;on is approxirn ated ant-d the n4ta-
tion motion (Section TTf) is eliminated. Since the L'ine detail of the t)uta-

tional mct'o.. i- absent, and orny the ;:'recessional rr.:t o, is left, the

numerical steF s 7. cafi be increased and thereby co-i;puter time is

reduced. The derivation p-,'zcecds as follows.

Equation (192) is combined hero with Eq. (200) for future ref-

erence:
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ma3u pd u KLsin6 3mg cosO costý (216)

Equations (199), (200), and (201) transformed to the 1, J, K system

are

F -pd2u2K -mg c inO (217)
1D

F = pd 2ii[K cosý + vK siný]sin6 mg cosO (218)

F K = pd u2[KL sin, - vKFcosl]sin& (219)

And in terms of the ý, 1i, ý system

F = F cose cosa - F sine cosa + F sina (220)
1 K

F = F sine + F coso (221)

F = -F coso sinc + F sine sin + F KCOSa (222)

If Eqs. (217), (218), and (219) are combined withEqs. (220), (221),

and (222), and use is made of Eqs. (209), (210), and (211), the

following expressions are obtaiaed

Ft = -pdu 2KD - pd'uz [KL cos +vKF sinf sin6 sinecosa

+pdu- [KL sink - vKF cos Isin6 sin a (223)

F -pd 2 uKD + pd2 u2[KL cos"+ vKF sin,] sinS cose - mg (224)

Ft -pd 2 u`KD~ + pd 2 U.2 [KL cos4ý+ vKF sin tsin6 sine sin a

+pd U2 [KL sin4 vK F coslj si-16 cos a (225)

97

I



Finally,

m = F (226)

mn = F (227)
q

= F 1(Z28)

4.1 The Siacci-Type Approximation to the Force Equations - As

in the derivation of the Siacci equations (Section '), •? is defined as a

vector along the initial velocity vector of the projectile to a point

(almost) directly above the shell, and Q is defined as a vector pointing

vertically down from the tip of P (almost) to the projectile. The dis-

tance from the tip of ? to the projectile is the swerve •. The swerve

is defined to be the displacement of the shell from P + Q; i.e., it is

the displacement of the shell from its straight-line path due to forces

other than gravity (or due to aerodynamic forces but not to gravity).

The Siacci equations ignore the swerve, but it is accounted for later

by the windage jump. The procedure here is similar; differential equa-

tions for the swerve will be obtained from the differential equations of

motion by subtracting out the Siacci equations for P and Q.

By definition, the initial velocity vector u0 is taken in the g, 1

plane so that a = ao = 0. Since P lies along uo, the elevation angle of

P above the horizontal (and in the ý, 71 plane) is 8 (see Fig. 12).

Siacci-type equations for P and Q, and for swerve components SV S T

and S are derived as follows. In terms of P, Q, SV, S, and S,, the

coordinates •, r, and • are

= Pcose° +÷S (229)

P sine° - Q+S (230)

= (231)
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Crordinate System g•, r1, r Showing Projectile Range

R in Terms of P, Q, and Swerve S
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Thus, the force Eqs. (223) through (Z28) become

"m(P•coseo +S ' = _ udXU D(P coso +S1

-pd 2 u 2 [KL cos + vKF sinl] sin6 sine( cosa

+ pdZu,2 [KL sin4- vKF Cos4] sinS sin a (232)

m(P sine0 - Q+S . = -pd~uKD(P sine -Q+S )

+pd2u2 [KL cos4+ vKFsinc] sin6 cose - mg (233)

mS = -pd uKDSt

+ pd u2 [K L costý + vK F sin~] inS sine sin a

+pd2 u2 [K L sin4-vK Fcoscf sin6 cos a (234)

By definition, the Siacci equations for P and Q are

mP = -pd 2 uKDP (235)

mQ = -pd2 uKDQ + mg (236)

with

2
u = (P 2 _ 2PQ sin 00 + Qz)½ (237)

They are obtained from the equations above with the swerve set to zero

and with all aerodynamic coefficients except KD set to zero. Upon

substitution of Eqs. (2 ;5) and (236) into Eqs. (232) and (233), terms

containing P and Q cancel and the equations for the swerve components

S and S remain. The following are obtained:
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2 uK
S•= ..pdz•D

-pd 2u 2 [KL cos + VKF sin] sin6 sine cosa.

+Pd 2U2 [KL sin4 - vKF cos] sinS sina (238)

t nS = -pdzKDsn + pd u2 [KL cos6+vKF sinp]sins cos6 (239)

The equation for S is Eq. (234).

The equations derived up to this point would be exact if , S

and were included in Eq. (237). Little error results, however, if

these terms are ignored. For Eqs. (238) and (239) to be used as

written, it would be necessary to integrate the equations for a and0.

But since E and a do not change much from their original values of
0

0 60 and a = 0 for those trajectories which are of interest, 6 will be

replaced by 00, cos a will be replaced by 1 and sin a by 0. The dif-

fereutial equations for the swerve become

ms = -pd 2 uKDS p- pd 2 u 2 [KLCos4)+vKFsin4)]sin5 sin60  (240)

inS = -pduK DS + pd u2 [KL cos4+vKF sin 1]sin6 cOS3o (240

ins; pdKDS + pd u2 [K L S in4) - vKF cos4j sir.6 (242V

Equations (240) and (241) can be combined. Take

S = -S sineo +S coso '243)

s S cos0 +S sinP (244)SII = 0o 0°

where S and S are in the ý, q plane and are rebpectively perpendi-

cular and parallel to 1; SI is positive above P, and it will be shown

that S is identically zero. The equations for S and S as derived
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from Eqs. (240) and (241) are

iS I = -pd 2 uKDS± + pd2u2[KLcosý+vKFsin•jsin6 (245)

MnIS = -pd~uKD'lt (246)

Since at t = 0 S S = 0, it is evident that S is identically zero for

all t. Values of S and S , then, are

S = -SI sin 00 (247)

S = S cosO 1(48)

and it is observed that the three differential equations for swerve have

been reduced to two, Eqs. (242) and (245).

If Eqs. (242) and (245) are used in their present form to com-

pute firing tables, the initial precession angle 4o will have to be one

of the table entry parameters; if one more coordinate transformation

is made, however, this can be avoided and the volume of the tables

will te greatly reduced. Components of swerve in and perpendicular

to the plane of initial yaw are used. See Fig. 13 in which Pis direct-

ed into the page. The new swerve components are

S S = SI cos4o +S sin° 1(49)

S3 = -S sinco +S coso 1250)

with S2 in the plane of yaw and S3 normal to it. The differential equa-

tions for S and S 3 are

m = -pd2 uK DDZ + pd2u2 [KLLCOS+VKF Sin']sin6 (251)

Sm3 -pd 2 uKDS 3 + pdu sin' VKFcos']sin6 (252)
Sý3L
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whe re

@,= 4)-%

and ' 0 at t 0. Given 0o, 0, and values of S and S3 , values of

SV, S ,and S can be found from

S = -(S 2 cOS4) - S3 sin4o) sineo (253)

S (S cos4o - S3 sin4o) cos 0 (254)

S S2 sin% + S3cos4) (55)

If angular windage jumps (in milliradians) are desired, they are

J2 = 10 3 S 2/P (256)

J3 = 103S 3/P (257)

In Ref. 59, S2 and S3 were denoted by the symbols Sx and Sy

respectively. The notation used here is preferable, since S2 and S3
are in the Z and 3 directions, respectively, of Fig. 11 when viewed

at the time of firing. Calculations show that J2 and J3 approach more

or less constant values as the projectile moves down its trajectory.

Accordingly, windage jump can be accounted ior by calculating the

point-mass trajectory defined by Eqs. (235), (236), and (237), and by

moving the resultant hit-point vector P + Q through angles J and J30

in and perpendicular, respectively, to the initial plane of yaw, as seen

from the point of fire. The windage jump correction amounts to a slight

change in the direction of P or 7.

The set of equations derive-i thus far is complete and can be used

to compute firing tables. If the spin is sufficiently large, however,

the equations of angular motion can be simplified and the computation

time can be reduced considerably. The following subsection contains

the simplified equations and the justification for simplification.
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4.2 The Approximate Equations of Angular Motion - The crite-

rion for sim-lifying the equations of angular motiorn is that the 3pin

must be large enough for the motion of the shell to be essentially gyro-

scopic. In this case, the angular momentum vector H will be nearly

parallel to IA, and the component of H perpendicular to 1 A will be

small.

If s is a unit vector in the direction of Hl

H =1Hs (258)

and Newton's second law for angular motion becomes

G = H = s + Hs (259)

and so

= Hs X s = HSsH (260)

where

(AH = s X s (261)eH

is the angular velocity of H, as can be seetb from Fig. 14. Under the

assumption that Aw A >> :'3WB (see Fig. 15), it follows that H1 is nearly

parallel to 1AT or that

-s A (262)

and that the angular velocity of H, that is wH' is approximately equal

to the transverse angular velocity of the projectile, wT;

H " u) T B +13(+'3 (263)
H T =05
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S( = A (t +At) - •(t)

Afs It)

0

nlir (t + At) - (t) A 1
= At-0 At tAt-- At

wH= sX s -: sX T V-V

s is a unit vector along H

T is a unit vector along As

v is a unit vector pointing out of the page

Figure 14
Proof that s X s H
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The Relation Between H and
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Then H ftAA and Eq. (260) becomes

AwoA (TBwB + T 31P 3 ) -• "AX× (264)

It follows from Eqs. (?03) and (204) that

W3A A p- pd 4UwAKT sin5 - pd 4uKI&B (z65)

-W BAwA A pd3uK M sn6 - pd4uKHw3  (266)

This approximation is equivalent to deleting terms containing B in Eqs.

(213) and (214). The advantage is the elimination of terms containing

WB and 3. This negates the need for integrating to obtain w B and w3
and also smoothes out the nutational ,notion as is explained by Reed

(Ref. 60). The smoothing of the nutational motion alleviates the require-

ment for a small step size (At) in numerical calculations.

The approximate equations for ; and 6 are obtained by solving

Eqs. (265) and (266) simultaneously for wB and w3"

-A•Apd 3u 2 KM sin6 + p (2d6U7)AKHK sin6
(A(,.,A + (p d4 uKH)2

4 ' 7
Apd uw•KTrsin +p pd u3KHKM sinS

(AOA)2 + (pd uKH) (68

For high spin, (Pdd4 uKH) 2 is usually much less than one percent of

(Aw A) 2 ; hence, (pd 4 lKH) 2 is dropped from the denominator and these

equations become
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pd3ii2 r ___n209

'B IK M K si (269)

wA

pd u F1W3 = KT + KHK sin6  (270)

SA v 2

The equation for 6 can now be derived from Eqs. 1182), (216), and (270).

It becomes

[KL- - KT+ Lpd 5 K KM ']S in(•cosecosA (271)

m [L T Ai, 2 HU

The gravity term must be dropped from this equation, since, for very

small yaw, the aerodynamic term will be small compared to the gravity

term and erroneous results will be obtained in numerical integration

attempts. The term containing KHKM is probably negligible. Calcula-

tions show this to be so for the 20-mm, M56 round, but a judgment will

be needed for new rounds under development. To obtain the time de-

rivative of cos 6, Eq. (271) is multiplied through by - sin 5. Then

dcos6 _ pd 2 u [K - 2 T +!A!- K KH ] sin-6 (272)

dt m KL- fK Av2  HM;

The equation for ; is derived from Eqs. (177), (178), (181), and

(269) under the assumption that & and 0 are negligible in comparison

with ;. If a and are neglected, the equation for ; is

AdA KM (273)

The term convaining KH was dropped because it is negligible.

109



4.3 Summary of Equations - Tht; approximate equations are

summarized as follows for the -onvenience of the reader:

mp = -pd 2 uKDP

mQ = -pd2 uKD + mg

MIS -= uK + pd uK cos '+ vKF sin sin 5

-dZuKDS3 pdZuZ [K sing'-vKF Co Isin6n pd3 +P [LCO

d cos 6 K pdd [K~~ T+ pd KHKM'f sin 2
o m -x- AvT 7

S=pd3 u2

K
AWA M

u = -z_9s•n9 +Q2

WAd
V :

u

S = Pcos 0°

] - Psine +S -Q
0 rI

=

S• IS= os -S 3 sin 4) sin O

(S2 cos -3 sin cos 0

= S2 sin o + S 3 cos 4
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SECTION V

THE SIACCI MPETHOD

1. General

The Siacci method (Refs. 1, 24, 27, and 61) is a means of obtaining

approximate solutions to projectile trajectories by use of tables. It is

applicable in many situations where high computational accurac.' is not

essential, such as in preliminary design and in new concept studies, and

in particular, i' is valid for relatively short trajectories where gravity

drop is not appreciable and yaw is small. The calculational ease with

which the method can be utilized, e. g. , in hand computations, or in an

airborne fire-control computer, makes the Siacci method invaluable in

many modern applications despite its early origin. The original method

was devised sometime around 1880 by F. Siacci of Italy. The treatment

given here is that of Ref. 61 with minor changes.

With the development of the 20-mm, M56 round in the late 1950's,

the trend in ballistics calculations was away from 'se of the Siacci

method and toward more sophisticated calculations since modern com-

puting equipment was becoming available. Sophisticated methods are

now well suited to ground-based ballistics investigations, but for airborne

fire-control calculations, onboard computers are still somewhat Jimited

in capacity. The Siacci method is still a candidate for airborne fire-

control calculations.

A description of the basic Siacci method follows and a derivation

is given in Subsection 2. In its basic form, the trajectory as given by

the Siacci solution is as follows:

t ( u/ - T(u/a (274)

..... .......



p _ C [S(u/ao - S(uo/ao)] (21)

and

Q ( )Z [u/a) - A(uo/aO) -I(uo/a) P (276)

in which S, T, I, and A are tabulated functions of U = u/ao ; t is the

time of flight, P is the "rseucorange" along the initial velocity vector

Uo, and Q is the gravity drop (Fig. 16). The parameter o- is the relative
air density at the firing altitude, a is the ratio of the speed of sound at
the firing altitude to that at sea level, and C is the ,allistic coefficient

given in terms of the projectile mass m, in pounds, and diameter d, in

feet, as shown below:

C = (lb/in2)'
144d

The parameter u is defined as follows

dP
U - dt

and is the independent variable.

The tabulated functions S, T, I, and A are calculated by numerical

integration of the following equations:

dS 1Zi dS(277)
G(U)

dT 1 (278)
UG (U)

di g 1(279)
U G(U)
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dA I(U) (280)

in which

g = 32. 174 ft/sec 2

is the acceleration due to gravity, and

G(U) = UKD (U/Vso) (281)
1883

KD is the zero-yaw drag coefficient, and Vso = 1,116.45 ft/sec is the

speed of sound at sea level. The numerical integration is carried out

backwards (i.e., the integration proceeds from larger to smaller U)

from some arbitrarily chosen value of U, e.g., V, such that V> u/a 0

for all u of interest. Initial conditions are S(V) = 0, T(V) = 0, A(V) = 0,

and I(V) ± 0. The solution given by Eqs. (274), 275), and (276) is inde-

pendent of the choice of V. The Siacci functions bear the following names:

S Space function

T Time function

I Inclination function

A Altitude function

At the date of writing, tables have been prepared for the 7. 62-mra

NATO round, the 20-mm, M56 round, and the 40-mm, Mk 2 round, (Refs. 62,

63, and 64).

For computer applications (airborne or ground based) the Siacci

functions can be curve fitted.

The Siacci method in its basic form is useful in most situations

where point-mass (particle) trajectories are applicable, that is, situa-

tions where the projectile angle of attack (yaw) is small and all aero-

dynamic forces except the drag are negligible. This situation occurs

for forward fire from fixed-gun fighters and sometimes in tail defense

of bombers. Fo._ example. the Siacci method is applicable to fire-

control problems for the F- 111 and for use with tracer-line-type gun
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sights, although it may be just as convenien t to perform onboard particle

trajectory computations in these instances.

For fire from flexible guns and from fixed gun fighters in high angle-

of-attack situations, the angle of attack of the projectile can be large and

other aerodynamic forces besides the drag become important. In this

instance the Siacci method in its basic form becomes inadequate. On-

board trajectory computations are no longer reasonable, however, when

six-degree-of-freedom computations are necessary. Techniques for im-

proving the accuracy of the Siacci method for the large-yaw situation are

given in Subsection 3.

2. The Basic Siacci Method

The basic Siacci trajectory is an approximation of a point-mass

trajectory. Corrections can be added to improve its accuracy as will

be discussed later in Subsection 3. The equations of motion of a mass

point, as can be derived from Fig. 16, are

mx = -Ej: (282)

my = -E- - mg (283)

where

d2
E = pd VKD(V/Vs) (284)

V is the orojectile velocity, d is the projectile diameter, m is the pro-

jectile mass, g is the acceleration due to gravity, KD is the drag coef-

ficient, and p and Vs are respectively, the air density and the speed of

sound at the altitude of the firing point. Both p and Vs are assumed con-

stant over the trajectory. This is not a bad assumption for the air-to-

air case and for close air support.

Coordinates x and y are to be replaced by Siacci coordinates P

and Q shown in Fig. 16. Substitution of

x P cos 8 (285)
0
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y = Psino° -Q (286)

into the differential equations yields

m P = -E (287)

mQ = -E6+mg (288)

where 0 is the angle between P and the x axis and is a constant.

An equation for 0/P is required. By means of the relation

and the differential equations above, it can be shown that

With the substitution it = P, the equations to be solved are

= pd 2 uVKD(V/Vs) (289)

U u(290)

and

d (A(U91)

in which E has been replaced by pd VKD, and V is given by

V =,/i 2 2PQ sin E0 + 42 (292)

For shcrt, flat trajectories, Q << P, and,to a go.d approximation,
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V -- - -u

(293)

This is the Siacci approximation which enables the trajectory computation
to be reduced to tabular form since, from Eq. (289),

mdu

dt = - u (294)p dz UKD(U/Vs

can be integrated directly.

Before soiution, it is desirable to make the following substitu-
tions:

a C LTo-] (295)
0 Lo01

P .S S- S (296)( 1) 
0

Q z q (297)

u a U (298)0

where C, a-, a, To, and S a;.e constants and T, S, q, and U are new

variables which replace t, P, Q, and u, respectively. C is the ballistic
coefficient given by

m ~(?99)
(IZd) 2

Units of C are lb/in.2 (for consistency with past usage) when -n is in
pounds and d is in feet; T- is the ratio of the air density at altitude, p,
to that at sea level, pop

~L.. (300)PO

3where po = 0. 076474 lb/ft3. The parameter a is the ratio of the speed0

of soundV ,at altitude, to that at sea level, V = 1, 116.45 ft/sec,S sO
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V
a s (301)0o V

so

With these substitutions, the equations of motion become

dU(32
S= - UG (U ) (302)

S= U (303)
UT

and

-dT _.U(304)

where

G(U) = UKD(U/Vso) (305)
1883

The reason for the substitution is now clear; these equations are Indepen-
dent of Vs and p and hence, the Siacci tables are independent of altitude.

From the first equation

dT dUdT = - UO-

and hence
U

0

T - T 0

U

where U = u 0'a 0 and u is the initial projectile velocity. If T is defined

as

V
r, dU

T(U) = d U t (306)

U
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where V, for all applications of interest, is any convenient number such

that V > U, it follows that

T - T = T(U) - T(Uo)

V V
= dU (' dU
= UG(UT - UG--Myt
U U

0

That T - T is independent of V Is obvious.
0

The equation for S may be solved in a similar manner by el"iminat-
ing dT.

dS = UdT - dU

G(U)

0

S-S _ dU

S is defined as

V
'" dU

S(U)= \ (307)
J Z7
U

therefore

S-S = S(U)-S(Uo0

For the thild expression, we have

d gdU
NU ---U G(U)
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so

U
0

d gdU
IT U 2 G(U)U

since dq/dT = 0 at T = T 0 If a function I(U) is defined as
0

V

I(U) = gdU (308)

U U G(U)

we have

Idq I(U)-I(Uo

Thus

dq = UI(U)dT - UI(U )dT

I(U) dU + (Uo) dU

I(U duU
S I(UT)dU I(U 0dS

and it follows that

U
0

q I(u) du (U -(S S
G(U) o o

U

If a function
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V' (U) dU
A(U) = I(U) (309)

TJ

is defined, then

q = A(U) - A(Uo) - 1(U) 0S(U) -S(Uo

It follows that the relations for t, P, and Q are

C [(u/ao) -T(uo/ao)] (310)

SP =u/ -- /a (311)

Q =(a- )Au/)- A(uo/ao) - I(u /a P(312)a. [Ao/o o0

where T, S, I, andA are given by Eqs. (306) through (309), respectively.

In application, the functions S, T, A, and I are tabulated once and for

all by numerical integration. Given initial and final bullet velocities uo

and u, respectively, t, P, and Q can be calculated by use of the tables.

3. Corrections to the Siacci Method

This ,ection contains techniques for improving the accuracy of the

Siacci method when some of the basic assumptions upon which the method

is founded are violated. Corrections are developed for a variable atmos-

phere, yaw drag. and windage jump. This section is not complete in the

sense that the methods are fully developed. Rather it is meant to serve

as an indication of how correction techniques are derived. Indeed, tech-

niques depend somewhat upon individual rounds and are best investigated
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in conjunction with other calculational methods such as six-degree-of-

freedom calculations. Correction terms needed for one type of pro-

jectile may not be needed for another. Also, correction terms may be

derived by a number of different methods. Thus, different formulae for

the correction terms derived herein can be found in Refs. 65 and 66. A

comparison of correction techniques is given in Ref. 67 for some ob-

solete rounds.

3. 1 A Variable Air-Density Correction - The Siacci theory in its

basic form is founded upon the approximation that the air density is coil-

stant along the projectile trajectory. To compensate for this approxima-

tion, correction formulae may be derived. The following comments are

pertinent, however.

In problems involving air-to-air combat, the target and attack

aircraft are usually at about the same altitude and the air-density cor-

rection is unnecessary. In low-altitude air-to-ground problems, ex-

perience has shown that the calcul ted hit point is not much affected by

the constant air-density approximation, whereas the calculated time of

flight is affected. But, in air-to-ground situatiors, the time of flight is

usually not needed to any great accuracy provided the target is not mov-

ing rapidly and the wind is not strong. It is concluded that in most cases

an air-density correction is not needed, but nevertheless correction

formulae will be developed for situations where they may be needed. The

derivation follows.

It will be assunied that the expression

p = po0 ae -hy (313)

adequately represents the air-density variation at points between the gun

and the target, where p0 is sea level air density, T is the relative air

density at the gun, h is a constant (h -t 3. 158 X 10-5 ft-1), and Ay is

the altitude variation along the trajectory. Evidently, from Fig. 16,
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Ay= PsinO -Q-Psin0
0 0

Now consider the unyawed equations of motion (289), (290), and (291).

Eq. (289) becomes

-hP sin umu = -p Poe o d ZZKD(U/Vs)

under the Siacci approximation u = V. It follows that

C dU - hP sin 0= e odt'U G-0- (U)
0

and that

-hP- sin 0
C dU 0~G(U -e dP

Integration of the second expression leads to

-hP sin 0
C [S(U) _ S(Uo)J 1 - e 0 (314)o" h sin 0°

--hP sin 00
Solving for e yields

"-hP sin 00 Coe = I - h sin 0 S(U) -S(t
0[ O

This expression is of the form

-X -e -x

Hence
i3 'Cx 1 y y3

e = -y = l+y+ +y +
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provided ' < 1. For an air-to-ground attack from an altitude of, say,

P sin0 = 5,000 ft0

x = hPsin0

= (3. 158 x i0-5) (5, 000) = 0. 16

and

-X
e = 0.852

It follows that

y= 0.148

and

2
y = 0. 0Z19

Then, to within about 2 percent

X
e " !+y

or ,'P sno C
eP = 1+ h-- hin 0. SIU) - S(Uo)

The expression for dt becomes

hPsin0

0
0t 

=) C dU
- g UG(U

I - + -S-- h sin0 s(u) - S(U)-U C a Ufir 0 0a

and hence
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+ () hsine 0 [H(U) -H(UJ)] -S(U.) [(U) -T(U) 0 (315)a' ao0I

where

V

H(U) : S S(U) dU (316)

U

H(U) may be tabulated once and for all along with S, T, I, and A.

The numerical example above applies to maximum P and hence,to

minimum U. As U runs from U to U, y varies from zero to 0. 148.

This implies that the integration is probably much more accu-ate than

z percent. If accuracy is found insufficient, e. g. , for higher altitude

air-to-ground fire, more terms can be taken in tL. expansion for (1 - y)-

The analysis proceeds in a straightforward manner.

The correction term for Q may be derived as follows:

d( )= 2-dt

U + L h sin o S(U)-S(Uo)II C dU

a U Cr W-O o -a-a UG (U)

Then

Q -u C [I(U) - (Uo)]
o' (317)

+ ( f h sn° [SIU) - SlUo) lU) -A(U) - A(Uol
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4

If, for short, Q/u = F, then

dQ = Fa dt

+ C h sin 0 8[S(U) (U)] T dU)

If the second-order term in h sin e. is discarded, since it is obviously

small, then

dQ = ( [I(U)- I( ] d

- aohsine0 [SIU) - SUol}I(U) -aAU) -A(U) )

and finally,

CE~ 3(U S (U1(U) -JS ( )1IU(U) -S(U4] d

a h sinO° WIIU) -

Ta) 0 ou7i7

VWIU' ZS(U)(U) - A(U) U (39)
- (U)

u
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and

V

W (U) S (U) dU (320)

U

The correction term is quite 'omplicated, and hopefullh, is negligible

in most cases.

3. 2 A Yaw-Drag Correction - In more exact trajectory computations,

other aerzdynamic forces in addition to the zero-yaw drag force are in-

cluded, and the projectile is treated as a rigid bc.dy which executes angular

motion about its center of mass. An important additional force is the yaw

drag which "rises from the angle of attack (yaw) of the projectile. The

yaw angle 6 is measured between the projectile body axis and the projectile

velocity vector. The drag force for the yawed projectile can be written

as

KD(M, 6 ) = KDo(M) [1 +KD 6 2 62] (321)

where, for present purposes, KD 2 is considered to be a constant and

M = V/V is the Mach number. This expression for KD takes the place

of KD in the equations of motion, i. e., in Eqs. (282), (283), and (284),

and also in Eqs. (287) and (288). If E retains its meaning, Eqs. (287) and

(288) become

mP -E [ +KDZ 62ZIj2

D621
mQ=-E [I +KD' V]Q + mg

If the derivation proceeds as before with the Siacci approximation V P,

Eqs. (289), (290), and (291) show that the following relations will be

obtained:
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L2

[ 22~ 'z]
mu = - pd u KD(U/V) 1 + KD 6

P-"u

Substitution of a U for u, p for p, 144d2 C for m, and use of Eq. (305)

for K D yields the following result for the first relation above

1I +KD62]'Idt- C dU
1+KD2 a- ° UG(U)

6 0

It follows immediately that

t

t C T(u/a) T(uo/a] K 2 dt (322)o- aK 00 D, 0

0 0

With

dP dP
dt = d

0

it follows that

I + KD 6 2] dP C dU

and
p

p C [S(u/ao) _ S(u/a)J - D S6 2dP (323)
0

In order to derive a correction term for Q it is convenieut to write

the differential equation for Q in a different form as follows
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fj (Q\) df) \ ddod_ I c(-Q')
- dt dP F d dPd

d2QdQO

dP2

or

d2 Q -

dP2 u2dpz uZ

Let

D dQ

so that

dD g

u

Then

[1 + K D 6 2] dD = 2-f1 + KD 2 6?]dP

_ g C dU

or

dD =-K62 - L dP C gdU

6 u a 2 G(U)
0

and it follows that

p

D= K 2 S6 2..gdP + C [l'U) -( 1) (324)D D16 u-' u•a-

0
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Also

[I + KD6z] dQ = D[1 + KDZ] D dP

P

= - KD6Z KDz • d.' gdP
6 6 0  u

C [I(U) I(Uo)] C dU

7a 2 ] G (U-
0

It follows that
Q P P'

Q K 0 2 SSZdQ K D I +K 62]062 g dP"dP'

S 20 = 0 [-KD6Z KD6 Z 0j u

+ a(S .2 [JA(U) A(U.) I(U) S(U) - S(U~f

-

-

or

Q po o-o 0
Q P P

SKD 2 6 dQ K D 1 + KD 6Z u2 dP1 d

0

+ C \ A(u/a )A(u /a )I(u /a T1 35T )oT o 0 0 0 (
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It is seen that equations for t, P, and Q can be written as before

but with correction terms

t

At = -K 62 dt (326)

P

AP 1  -K 5 2 dP (327)

0
PC r

AQ -K D 2 2I(u /a ) ) 6 dPAQ1= KD 2 o'

0 0

Q PP

-KDSr 2 dQ-KDZ K + 2] z 6 - dP" dP,
0 0 0 (328)

These equations can be evaluated only if 6 is a known function.

According to an approximate analysis by Sterne (Ref. 9), 6 is given

approximately by the relation

- 2 o -12 -cP (329)o s -i e,.
0

where 6 is an averagesquared yaw, s represents the static stability0

factor which is given by

AZN
s 0 4Bp- d 3 u2 (330)o 4B p d u oK

and

cc c + I (331)
0
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where N is the axial spin,

c~ - F+2 (332)

and
pod2

ci n 2 KD (333)

When Sterne's analysis was derived, there was no convenient

method of solving the general six-degree-of-freedom equations since

there were no large-scale digital computers, Now, it may be convenient

to solve them for yaw dependence and curve fit the solution. In any case,

it is probably true that • is given approximately by

S= K 6 e (334)

where K and P are constants.

From the approximate theory, the equation for )aw, Eq. (272),

may be ,vritten as

fd 2u [K md2  '
= m L A

where the gravity term and the damping term KH have bee-. deleted and

the app:roximation sin' = • has been used. 12 Eq. (334) is assumed

for 6, then

and it follows that

= m L A T
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it is inte.-esting to compare this result with that obtained from the Sterne

theory, Eqs. (329) through (333), in which -= ac. Curiously enough, it

can be shown that the two are in reasonable numerical agreement, at
Sleast for the 20-rm, M56 round, despite the different emphasis on in

Sthe two theories.

From examination of Eqs. (326), (327), and (328), it is evident ,>-

only Al: 1 can be integrated directly:

AP -Ks eo -2 P ed =_ (335,
D o 0

where

s - 1/2
k - 12 K KD 6  (336)

The equation for S(u/a ) is often written as

k
S(u/a) S(uo/a) +-G-P + 0 (337)

o 0 0 7C 2-

in which the e term is neglected for a large enough P.

An expression for \tI can be derived as follows: since P =,

and with k = Zoc,
2 - 1/2

Atl~KDsZS~o 0 o4'tl - - 1/ T = -koT
D -l2 0

where

P -kPP e-- dP

3 j-U
0

The expression for S(U) with the AP correction is

S(U) = lU +-P + k - e 2-(3)

k 1
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S... • •+ • . .. • ' ? • ••'•' ''• ' T-• •7• • " C - -, -- -

By use of this expression, a series in P can be derived for 1/U. It is

I I G(U) 0
7- U + (2+o U2"

0

G (U 0 ZcCk 0 12

0 U 0  0 0 (1 + k 0 ) 2  o

where

G'(U) = 0

0

If only the first two terms of this series are used,

P

aT I - + (1 + k -P e dP
0S U ~0 +k d

The function represented by the first two terms of the series for 1/U is
a straight line with the correct magnitude and slope at P = 0. As P
increases, it deviates from 1/U. But as P increases, the exponential
term decreases,so the major contribution to the integral is obtained for
P near zero where the approximation to 1/U is more accurate. It
follows that

[ -kPAt1 = -k° u

(I + k ) G(u /ao) oa (
+ k Z I- (I + kP) ekPf

0

If this expression is not accurate enough, more terms can be retained.

For large kP, it reduces to
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Now

-k+( + k0 G0 /a0 a-aC (339)

An expression can be derived in a similar manner for AQ 1 . By

use of Eqs. (329) and (336), Eq. (328) becomes
P

= - 2 I(-./ao) k e kPdP
0 0

P PdP'
k r e kP dQCP - k 1 + k e- k Ye gk" dP" dPI
0 ý F0 0 2

Let Z1I Z and Z3 represent, respectively, the three integrals. The

first is

Pn' -kP 1 -kP
Z = . e dP -

k
0

The second may be integrated by parts and by use of the expression

2
d Q gd2 u2
dP u

the following expression is obtained

- e-kP + -kPZ2 = e_ + .g_ ek dP
2 - %, U k

0

where, as follows from Eq. (32.4)

PdQ _ Cf [l(U/ao) _i(Uo/ao{. ko§e~kP g -dp

0 0 u
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The third integral Z 3 may be integrated by parts; it is

P
Z3 = [P - e-kP e- kP - dP

0 u

-k k U
- P ekP _dP+ -- e- 9 dP

u u
0 0

With

P

, e -kP dP4=, e 2

0

P

z 5 = pe-kP g2 dP

0 u

and

p

z - 2kP g dP
6 2

0 L

it follows that

AQ [ Ta~ C;g(u/ao) e -~./.

-( + kp) Z 4 + kZ5 - koZ ]

Z4V Z and Z6 can be evaluated approximately by expanding 1/U in

series. The first two terms of this series are

I_- I + 2 G(U )(I + ko) - P +S,- U3

0 0
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It follows that

k 0 [I(u/ao) e-k (u/ao)e
AQ° - [7 -(- Z

0
k u2

0

Zk g a- [ k
3 G(uo/ao)(l +k) - -- 2 - kP

S34
k 0 L

- e-kP - (l + ZkP)e ki] (340)

More terms in the series for 1/U2 may be retained if necessary. On the

other hand, one would expect to drop some of the exponential terms when

P is large.

3. 3 A Windage-Jump Correction - A spinning projectile fired into

a crosswind experiences an angular deflection of its direction of motion

out of its initial plane of yaw. This deflection is numerically equal to

about 5 percent of the initial angle of attack (yaw). For an initial yaw of
'0-

& 17. 5 milliradians, the windage jump is about 0. 87 milliradians, or

for l0u yaw it is about 8.7 milliradians. For the 20-mm, M56 round, the

windage jump in milliradians is, as a rule of thumb, numerically equal

to the yaw angle in degrees (e. g., 5L' yaw, 5 milliradians windage Jump).

For forward fire from a fixed gun in an aircraft, windage jump is usually

ignored since the dispersion of such systems is of the order of 5 milli-

radians. For a flexible, side-firing, gun system, the windage jump must

be included, however, since the initial yaw may be as high as Z0°.

For aircraft fire, the initial plane of yaw is the plane containing

the velocity vector of the aircraft V and the muzzle velocity of the gun
A

V M. The initial yaw angle 60 is the angle between VM and the projictiie

initial velocity vector uo, where
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u -V+V
0 A M

If the angle between VA and VM (the gun angle) is A, then, as can be

seen from Fig. 17, 6 is given by the relation
0

6 sin 6 VA sinA (341)
60 -si 0 u(31

0

where

Vlo 2 +V2+ZVAVM cosA (342)

,ZVA

Figure 17

Projectile Geometry Showing Initial Angle of Attack
6 in the Initial Plane of Yaw

0
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The magnitude of the windage jump in radians is given approximately

in Ref. 9 as

b6
E 0 (343)

u
0

where

b (K (344)

A is the axial moment of inertia, N is the spin, m is the mass, d is the

diameter, KL is the lift coefficient, and KM is the overturning moment

coefficient. (Note that this expression does not contain the Magnus

moment coefficients KF and KT.

In calculations, the windage jump is usually treated as a small

correction to uo in which case u is defined as

=V +V + J (345)

0 A M

where J = u 0 and J is in tne direction of VAX VM. From Eq. (341),

Eq. (343), andsince Iv x VM vAvM sin A, it follows that

M)u X• ") ( xVM (34b)

[VAX VM 0 o o VM(

Since J is small, the magnitude of u is not changed significantly. The0

direction of P is taken to be along Uo, so

S 0 P (347)
u 0

An alternate treatment of the windage jump can be based upon the set

of approximate equations of motion of Section IV, or on any appropriate
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six-degree-of-freedom code. The Eglin code R370, based upon the

approximate equations, is used to calculate windage-jump components

(among other things) for the 20-mm, M56 round in and perpendicular tothe

initial plane of yaw. These -zomponents may be used instead of J above.

Experience indicates that these windage-jump components are, for large

enough P, very nearly independent of all initial condition parameters

except 6. Appropriate formulae and necessary explanations follow.

Windage-jump parameters are J and J3" J3 corresponds to i

above and is normal to the plane of yaw, whereas J2 is in the plane of yaw

and is zero in the elementary theory. J2 and J3 are output in milliradians

as a function of time but they approach constant values as time increases.

From J2 and J39 swerve components in the units of P (distance) are cal-

culated from

S 10-3 Jzp (348)
2 2(38

S 3 = i0-3 j3P (349)

These components are transformed into an , coordinate system

(Fig. 12) by means of the equations (from Section IV)

S=- (S 2 cos o- S3 sin o) sin 0 (350)

S = (S 2 cos ° -S3 sin )cos O0  (351)

2 o 3 0oS• = S 2 sin 0 +S $3 Cos ý 0 (352)

where 0 is the elevation angle of u0 above the horizontal and 0 is the

angle measured about u between the vertical plane and the initial posi-

tion of the plane oi yaw. Components of a, ri, and r are given by

= P cos 0° +S (353)
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Ti= PsinO - Q+S (354)

S =(355)

The , coordinate system is shown in Fig. 12; g and • are horizontal,

and q1 is vertical and is measured up. The system is right-handed, so

is measured out of the page. P, Q, and uo are in the ý, plane. Expres-
0

sions for 0 and o are derived in Section VI.

Values of J2 and J3 used in Z0-mm, M56 projectile calculations are

J2 = 560 ( 56)

J3 = 536 0 (357)

where 60 is in radians, and J and J3 are in milliradians.

3.4 Independence of Correction Terms - The yaw-drag and the var-

iable air-density corrections were derived as if the two effects ai e inde-

pendent. This has some physical justification since the yaw-drag effect

is important at the beginning of the trajectorywhereas the change in air

density is greatest (e. g., in the air-to-ground case) at longer ranges.

There is a difficulty, however, with the equation containing P. The ques-

tion arises as to whether Eq. (314) or Eq. (337) should be used. This is

resolved by including both effect3 in Eq. (289). The following relation is

obtained

C dUJ -hP sin o + k°
- - 1+0e e dP

-hP sin 0 kP
[- e °+k 0e d

This is a good approximation since in practice k >> h. (For the 20-mm,

M56 round, k - 0. 004, whereas h - 0. 00003.) It follows that the cor-

rect expression to be used must be
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-hP sin 00 kPC[S(u/ao) S(uo/ao)] k~-

E- h sin 0 0oo

hP sin 00 k (

SP 1 2+ - -- (358k

This last approximation should be good past P• 1, 000 ft.

3. 5 Summarv of Results - Formulae derived in this section are

listed below ;or convenience. Q and t denote gravity drop and time of

flight as obtained from the basic Siacci theory, whereas Q and t denote
c C

corrected values.

k hP sin 0
S(u/a) =S(uo/ao + -.' + - P jz-

t= - (u/ao) -a)T( u/a)
0 IT

t = t + At + At
c p

Q= Q + AQ + AQC P
At = () a h sin 00 {H(u/ao) - (uo/ao)

- S(u 0 /a 0 ) --C t

at ko 0 ao 1 +k k ao/ao)/a
=0 oC o u - 0

0 0
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ko C
AQ = 2 I (u /ao0

0

ku + kP - 2a o -~ --a- - kP

V

i(U) S(U) dU
S UG(U)
U

AQ C aoh sino W (u/a) ( WU/a
AQ 7a 0' 0hn 1 WI 0 0

p ~)0 0 1 I

- 2S(uo/ao) a A(u/ao) - A(uo/ao)

-"I(Uo/a) 0 W,(u/ao) - W(U0/a0)

+ I A(u./ao) + I(uo/ao) S(U /a) Stu/ao) -S(uo/ai?

W(IU) = zS(U)GIU,(U) - A(U) dU

U
Vw S(U) dU

W1(U) UU

Exponential terms have been eliminated from the correction terms for

At 1 and AQ Additional equations (Sterne's theol-y) are

k = 2Tc

CIO
C = C' +-

0
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i- r

l p 0d2  mid 2
C 2- o 9 KH + KL

pod
2

c"t - KD
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and also

h = 3.158X 10- 5 ft-1

An alternate expression for c derived from the approximate theory is

pod 2 m dz ]
p [KL - KT]

m L A

Equations describing the windage jump are

Uo = VA+V M+J

S= ubV (VAXVM)

bAN ( KL
IU Kb = A--j L

u

Alternate windage-jump equations from the approximate theory (see

Fig. 12) are
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S 2 = 3O1 2P

S3 = lo- 3 33P

S= -(S cosd• -S 3 sin co)sin e
00

S = (Scos S sin)CosS2 0o "3 s 0 o o 0°

S = S sin 4•o + 3 Cos

= P cos e +S
0

T= PsinO - Q+S
o T1

= s
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SECTION VI

AIRBORNE FIRE CONTROL APPLICATIONS

1. General

In the present application, the gun-pointing problem is complicated

by the fact that both the gun and the target may be moving. In the air-to-

ground application, the target is stationary in many instances, but other-

wise its motion often should be considered. In a situation where the pro-

jectile time of flight is 1 sec, for example, the distance moved by a 60-mph

vehicle is 88 ft. The problem at hand, the fire control problem, involves

predicting the motion of the target so that the hit position may be obtained,

and involves determination of the correct gun-pointing direction to score

a hit on the target. Prediction of target motion is known as kinematic

prediction, whereas the gun-pointing problem is known as ballistic pre-

diction. Kinematic and ballistic prediction are discussed briefly in Sub-

section 2.

In Sections IV and V, equations of motion were deve_'ped for a

projectile in flight, but initial conditions were not considered. Initial

conditions will be developed in Subsection 4 for the equations of mo'lon

deve;,)ped in Sections IV and V.

Of interest in current applications is the gatling gun. The specifi-

cation of initial conditions for a projectile fired from such a weapon

mounted in a turret in a moving aircraft 's complicated. The combined

motions of the rotating barrel cluster, the turret, and the aircraft can

cause errors in calculations if they are aot accounted for. For example,

the distance from the aircraft center of mass to the gun muzzle may be,

say, 10 ft, and the aircraft angular velocity perpendicular to this dis-

tance may be, say, 60 deg,'sec or about 1 rad/sec. The component of

projectile velocity due to this angular rotation is, then, 10 ft X 1 rad/sec

= 10 ft/sec. If this component is perpendicular to the muzzle velocity,

which is about 3300 ft/sec for the 20-mm, M56 round, the angular error

due to ignoring this angular motion is 10 ft/sec divided by 3300 ft/sec
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and this equals . 003 rad or 3 mr. Slew rates of the gun will probably

be of the order of 1 rad/sec and the distance from the gimbals to the

gun muzzle may be between 5 and 10 ft. The error due to this cause

may be up to 3 mr also. The M61 gatling gun fires up to 6000 rounds

per minute from six barrels, so the barrel cluster spins at 1000 rota-

tions per minute or 27r X 1000/60 = 105 rad/sec. The distance from the

barrel-cluster axis of rotation and the center of any barrel is 1. 877 in.

It follows that the rotating barrel cluster imparts a velocity of 105 rad/sec

times 1.887/12 ft equals 16.4 ft/sec to the projectile. This amounts to

1000 X 16.4/3300 = 5 mr. Evidently these effects should be accounted

for in initial condition calculations and Subsectioi. 3 contains the neces-

sary coordinate transformations.

2. Kinematic and Ballistic Prediction

The fire control problem may be divided into two parts: kinematic

prediction and ballistic prediction. To determine the future target path

as a function of time and to find the hit position, given the time of flight,

is the kinematic prediction problem. For the present purposes, it will

be assumed that the target path is a known function of time. Kinematic

prediction in air-to-air applications is the subject of a separate study.

Thc determination of the correct gun-pointing directicn to score

a hit on the target, given the hit position, is the ballistic prediction

problem. When the gun and/or the target is moving, hits cannot be

scored by pointi g the gun directly at the target except in unusual cir-

cumstances. The correct gun-pointing direction is found by an iterative

trial-and-error proccdure. A first guess is made for the gun-pointing

direction, a trajectory is calculated, and the miss ,'istance is used to

correct the gun-pointing direction. If a second calculated trajectory

misses Lhe target, the process is repeated. The iterative procedure is

continued until the gun is on target.

Solution of the ballistic prediction problem, as described, implies

knowledge of the hit position, which in tuin implies knowledge of the

v'-ne of flight. But the time of fLght to ary point is not known until the
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correct gun-pointing direction to score a hit on that point is determined

and a trajectory L.as been calculated. In other words, the kinematic and

ballistic problems are interdependent and cannot be solved separately.

An iterative solution is available: a first estimate to the time of

flight is chosen, and, given the target path, an estimated hit position is

calculated. Given the estimated hit position, the gun-pointing direction

to score a hit at that point is determined, as described above, and the

time of flight is calculated. The calculated time of flight and the first

estimate to the time of flight are used to correct the estimated hit posi-

tion and th: process is repeated until the correct hit position is obtained.

The iterative solution of the kinematic and ballistic prediction prob-

'.ms, as described, requires the calculation of several trajectories.

The best such procedure will keep the required number of trajectory com-

putations to a minimum. An investigation of algorithms for onboard kine-

matic and ballislic prediction is needed, and will not be treated here.

The purpose of this subsection is to point out the existence of this problem.

3. Coordinate Systems and Transformations

In the development of initial-condition equations for a projectile

fired from a turreted gatling gun, five right-handed, rectilinear coor-

dinate systems will be used and they are as follows: (1) an earth-fixed,

inertial system, SI; (2) a system, SA, fixed in the aircraft with its origin

at the center of mass, with the xA axis along the body longitudinal axis

and directed out the nose, with the YA axis out the right wing, and with

the zA axis pointed down toward the aircraft floor; (3) a system, ST,

fixed in the airc-aft but with its origin on the axis of the outer turret

gimbal; (4) a sys*,-Ln, S attached to the gun frame with its origin on

the axis of the inner gimbal and which rotates about the two gimbal axes;

and (5) a system, SB, attached to the barrel cluster with its origin on

the gatling gun barrel-cluster axis of rotation.

Coordinate transformations between these systems are needed so

the projectile velocity, uo, angular velocity, wo0 position,R yaw, 6o,
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and precession angle, @0 ,may be calculated in inertial space, Sit at

firing time. To calculate 6 and of the direction of the longitudinal

axis of the projectile, i. e., the boreline of the gun barrel, is needed

in inertial space.

To expedite setting up these transformations, matrix notation will

be used. The appropriate derivations of matrix equations are given in

the appendix. A summary of results follows.

3. 1 Matrix Notation - The results of the appendix may be sum-

marized as follows: The transformation of the coordinates of a point P

as observed in space S' into the coordinates of P as observed in space S

is given by the matrix equation

a = c + Tat

where a' represents P as observed in S', the symbol a represents P in

S, c is the position of the origin of S' as observed inS, and T is a 3X 3

matrix which relates the angular orientation of S' to that of S. The

transformation of the velocity, i', of P as observed in S' into the velo-

city, A, of P as observed in S is given by

a = c + T(I' + Q' a')

where C is the velocity of the origin of S' as observed in S, and 0' is

the 3 x 3 matrix representation of the angular velocity of S' relative

to S. 9' may be written as

4 9 0
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where ax" ,, and 0z' are the components of angular velo.:ity of the

S' system with respect to the S system as measured in the S' system.

01 may be transformed into the S system by the relation

= T 0 T

where T is the transpose of T. The column vector representation of El'

is

0 yXj

however, and the transformation from SI to S is

w -- Twl

The column vector notation is obviously easier to use in coordinate

transformations.

A proof that angular velocities add is also included in the appendix.

For example, if w' is the angular velocity of S' with respect to S as

measured in S', and w * is the angular velocity of a solid body measured

in S', then

S= 
T(w' + w*

is the angular velocity of the solid body measuredl in S.

3. 2 Subscript Convention - It will be convenient to employ a sub-

script notation to designate coordinate systems. Thus, the coordinate

space J is designated by S and the coordinate space K is S The

angular orientation of the coordinate axes of S with respect to SK is

given by
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e =eK TKJ

or, equivalent!y, the angular orientation of the coordinate axes of SK

with respect to S is

eK =T e
K KJJ

where e and e K are row matrices composed of the unit vectors directed

along the axes of the two systems. The transformation from S to SK is

bK = bKJ + T Kb 3

where b3 is the vector (column matrix) representing the coordinates of

a point P in S . and bK is the vector representing P in SK* The vector

bKJ represents the distance, measured in S from the origin, 0 K' of

SK to the origin, 0j. of S .

The velocity transformation is given by

VK =VKJ + TKJ (V3 + KJbJ)

where V : b and V = bK represent the velocity of P in S . and SK,

r-spectively. V KJ = 6KJ is the velocity of 0 with respect to 0K as

measured in SK# and 92KJ is the angular velocity of S with respect to

SK as measured in S The column matrix representation of 0 KJ is
•K"

3.3 Coordinate Transformations - Coordinate systems and trans-

formations are described, starting with SB as shown in Fig. '8. There

is some freedom of choice in the way these systems may be defined, so

definitions were made as convenient.

In SB, the barrel-cluster system, the xB axis is along the barrel-

cluster rotation axis, and the gun muzzle, for any particular barrel at

the time of firing, lies on the YB axis a distance L from the origin.
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------ Gunbore Line

L ;ýMuz~zle

LL

B Barrel Cluster Rotation Axis XB

zYB

Fi;ure 18

Barrel Ciuster System, S
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The position of the gun muzzle at the time of firing is given by the

matrix

bB = L (3:59)

and the direction of the gunbore axis is specified by the matri-

V B = mB 1 o)1

"nB

The velocity of the projectile as measured in SB is parallel to vB and

is given by

uB = V BVM (361)

where VM is the muzzle velocity (a scalar), and the angular velocity of

the projectile as measured in SB is

2wr

S 2-- VM B (362)

where n is the distance traveled in units of d during one complete rota-

tion of the projectile. Units of n are calibers/turn. It is c':" purpose to

transform these four vectors into inertial space, SI*

The gun system, S is shown in Fig. 19, where the xG axis is

parallel to xB and the z G axis lies along the inner gimbal axis. The

distance from the origin of SG to the origin of SB is represented by the

matrix
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YG YB

XGB Gunbore Axis
XB

OB

YGB 1v YGB

BB X//x

Inner Gimbal Axis

z G

Fifzure 1 9

Relation of Gun Space, S and Barrel Clus:er Space, SB
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X GB\

bGB YGB (363)

)

The transformation matrix between SB and SG is

0 0

TGB = , cos M, -sin4M (364)

0, sin 4)M, Cos M)

where OMiS the angle between YB and the XGo YG plane at the time of

fire, and the position of the gun muzzle as measured in SG is

bG = bGB + TGBbB (365)

The direction of the gunbore axis as measured in SG is

VG = T GB vB (366)

and the angular velocity of the projectile in SG is

G =TGB (wGB + B) (367)

where
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M

GB0Il (368)

The projectile velocity in S is
G

S-G TGB (T B ( + "GBbB) (369)

where Q2GB is the 3 X 3 matrix representation of wGB;

(o 0, 0

%B= , 0 , - (370)

( ýM' 0)

The relation of the gun system, SG' with respect to the tarret

system, ST' is shown in Fig. 20. The distance from the origin of ST

to that of SG is

rTG Cos At

bTG = ( (371)

(rTG sin A')

The transformation matrix relating vectors in SG and ST is
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GYG

0
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G th T, T PaXT

SJ "-•"•Inner Gimbal Axis

z,-T

z
G

Figure 20
Relation of Turret Space, S T, and Gun Space, S G.

OGis in the xT zT Plane
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cos E'cos At' -sin El co-~ A', -sin A'

TTG sin E' , cos E', 0 (372)

cos E'sin A', -sinE' sin A', cos At

and the position of the gun muzzle as measured in ST is

bT = bTG + TTG bG (373)

The direction of the gunbore as measured inST is

VT =T TGVG (374)

and the angular velocity of the projectile in ST is

WT = TTG (wTG + wG) (375)

where

A.' sin E'

wTG = - Cos E' (376)T ('

inSG coordinates. The projectile velocity in ST is given by

UT - TG + TTG (uG + QTGbG) (377)

where
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-rTG sin A'

TG

UTG - 1•TG A .' |1 0(378)

r TG co s Aj

and

0 * E' ,-A'cos E'

QTG i t , 0 , A'sinE' (379)

A'cos E', -A'sinE', 0

Since both aircraft space, SA, and turret space, ST' are fixed in

the aircraft, the position of the gun muzzle in SA is

bA = bAT + TAT bT (380)

Whereas it is possible to define TAT in terms of orientation angles

relating ST and S this will serve no pdrticular purpose here and

will be omitted. TAT can be defined in any particular application when

the need arises. The vector bAT is the distance from the airciaft center

of gravity to the origin of ST and is measured in SA' The direction of

the gunbore in SA is

vA = TT V1 (381)

The angular velocity of the projectile in SA is

wA = TA'F WT (382)
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and the projectile velocity in S is
A

,A = TAT UT (383)

The position of the gun muzzle in inertial space, Si, is

bI = bIA + TLAbA (384)

where bIA is the position of the aircraft center of mass in SI, and TIA
is the matrix which relates the relative orientations of SI and S Writ-

ing TIA in terms of orientation angles of the aircraft would serve no

purpose here and will be omitted. The direction of the gunbore in S1 is

V I = T1AVA (385)

and the angular velocity of the projectile ir SIis

w, = TIA ('1A + A) (386)

where wIA is the angular velocity of SA with respect to SI as measured in

SA and

•IA -
(387)

r

The velocity of the projectile in S A is

Ul= UiA + TIA (uA + IA bA)
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whe re

Q IA r 0 , p (388)

Parameters p, q, and r are the usual symbols for the components of

aircraft ang, lar velocity in the xA, YA' and zA directions, respectively,

and are asb. ned to be known. The matrix UiA is equivalent to the air-

craft velocity vector V Ate1.

uIA ( VA (389)

Usually, the aircraft position matrix, b I, is of no interest (only rela-

tive target position is needed) aad the origin of SI is taken to be at the

instantaneouL position of the aircraft ceater of mass at the time of fire.

Thus

bIA = ( (3901

and b, is the location of the gun muzzle with respect to the aircraft cen-

ter of mass. The aircraft altitude is, of course, assumed to be knowu.

The symbol used in the next subsection for the initial bullet position at

the time of fire is Ro, so

-b- (391)

Als. the projectile velocity and angular velocities at tine of fire are,

respectively,

u =uI (392i

'II

1'31



and

Uv) WI (393)

and the direction oi the gunbore or of the shell longitudinal axis is

e Vi (394)

4. Initial Conditions

In Subsection 3, coordinate systems and transformations were

introduced for the calculation of projectile velocity, U0, projectile

angular velocity,o , gun muzzle position, Ro, and boreline direction,

e in inertial space at the time of fire. It will be assumed that these

vectors are available (defined in inertial space) so that appropriate

initial conditions may be derived for trajectory c3mputations using the

equations of Sections IV and V.

4.1 Initial Conditions for the Matrix Formulation - Requiied

initial conditions for use with the matrix formulation of the equations

of motion, Section IV, Subsection Z, are values at timne t for the com-

ponents of u, •, Ro, and the direction cosine matrix

0 f f.12 3

A rn, m2  m 3

nA
1 I 2 n 3

By definition,

Xl = o
1, e
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and from Eq. (159) it is seen that initial values ofIi, 129 and 13 are

defined. Also, initial position R0 is given. Other initial parameters

depend upon the choice of the x 2 and x3 directions of the xx2fx3

coordinate system and a convenient initial orientation is that shown in

Fig. 21. It is seen that

( (CoIS WCOS a' , cos P' sina', sin R

x2 = j-sin' cos a' , -sinI" sina', cos P'

sin a l I - cos a t 0

Comparison of this equation with Eq. (159) shows that

1 cos P' cos a'

S= cos P'sin a'

13 = sin P1

and it follows that

cos ' = 1 - 23

COS a.t =

"3

sin a 12

3
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Relation between the x Ix1,x 3 System anrd the X, Y, Z System
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Given a' and p', the other direction cosines may be calculated and so

*As~ defined. Components of u° and o in the xltxztx 3 coordinate

system are given by the matrices Au° and Aw, respectively, where
and w are the inertiai space matrix representations of 10 and W0, re-

spectively. This completes the set of initial conditions for the matrix

equation formulation of the six-degree-of-freedom equations.

4. Z Initial Conditions for the Euler Angle Formulation - Initial

conditions for the Euler angle formulation of Section IV, Subsection 3

are specified by values for the following parameters: ao, 0o, n u')Ao'

WRBo' w3o' bo' 0 o ý o' *o, and •o. For convenience, the origin of the

i, _ tial space, SI, is taken at the instantaneous position of the gun muz-

zi at the tiiae of fire, so initial position coordinates 0o0 Io',and ;o

are zero. As was explained in Section IV, the g, n1, axes are defined

such that il is vertical, positive up, and the t axis lies alcng the pro-

jection of u° in the horizontal plane. If the xI, YI, zI axes are defined

as shown in Fig. 2Z, the relation between the two systems is given by

sinB1, cos B' 0 I

- 0 , 0 , 1 y (395)

cosB', -sinB', 0

In this equation, an arrow over a symbol denotes a unit vector ir. the direc-

tion associated with the symbol. If ux, uy, and u are the components of o0 in

the xi, y1. and zI directions, respectively,

u u 2 + u 2 + u (396)
0 x y z
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Figure 22

Relation of the ý, i!, • System \Viti- Respect to

the xI,Yi, Iz System and u0
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sinO =(397)0 11
0

U

cos 0 = xy (398)
0 u

0

where

i = u2 + u  (399)
xy x y

and

sinB' = x (400)

I/

xy

u
cosB' = Y c401)

e exy

By 0. If the components of e in the xliz I systemBydefinition, a° I I

aie ex, e ,and o

Cos 6 0 0e- (uxe +u e +uze) (402)
0 u 0 u xX y y zz

0 0

and

sin6 = 1 - cos, 6 (403)
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An expression for the angle 0o can be obtained with the aid of Fig. 23.

In the figure, '11 is in the vertical plane and is perpendicular to u 0

Hence, o is the angle between T1' and the projection, e,_, of e in the
0- - 0

T1', plane. From Eq. (395), the components of e0 in the Tr coor-

dinate system are

e = e sin B'+ e cos B' (404)

e = e (405)11 z

e= e cos B'- e sinB' (406)g x y

Hence,

e = -e sin 0 + e cos o (407)

T10 71 0

and with

e= /e z +e (408)

it follows -hat

ecos o =--,L! (410)

0 e±

From Fig. 2z,

168



0
ee

TIu

e0 0

Figure 23

Geomet:y Defining 0
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-T -° o ( - -

cose sine
0 0

\1' -on Cos , 1 (411

At firing time, directions 1, 3, and K of Fig. 11 coincide with the direc-

tions of ý', T', and • of Fig. Z3. Directions A: B, and 3 are related

to the directions of •T 11, and ý' through the matrix relation

I A Cos5 6 , sinS 0Cost , sinS sin ol

1 -sin 6 , cos6 Cos° ,cos6 sin (412)

13 0 , -sin Cosb

as can be seen from Figs. 11 and 23. If the components of w- in the
0

xI, YI, zI coordinate system are x, u y, and wz,it follows from Eqs. (395)

and (411) that

w-sine sinB', -sine cosB', co O we (413)
( w t /co s 0 O0sin B , , cos e cos B ' , sin e

CAO sin cs', oO

co B' , - sin B' (413

and from Eq. (412)
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W A :Cos o, sin 0Cos 0 , sin6 0o sin

Wa Bo sin 6 0 COS6 0Cos 0 , cos 6 sinp 0 7 (414)

3o)0 , -S0flo , oO o,

This completes the set of initial conditions for Euler angle formulation.

4. 3 Initial Conditions for the Approximate Equations - Initial con-

ditions for the approximate equation3 of Section IV, Subsection 4 are de-

veloped in the same manner as those for the preceding subsection. New

parameters are

P =0

= u

S5=0

S3 2 092 0

S = 0

3

Parameters u , 6o, (op, o, and B' are calculated as before.

4.4 Siacci Calculations - No integration is required when the

Siacci equations are used. However uo, o, B', and (p are needed and

they are calculated as in Subsection 4.2.
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SECTION VII

FURTHER COMMENTS

Whereas this report covers most of the aspects of exterior bal-

listics which are of interest in airborne applications, some items are

excluded because they are adequately covered elsewhere. Subjects

omitted for this reason include numerical integration, and the standard

atmosphere.

Methods of numerical integration are required since it is believed

to be impossible to obtain a closed-form solution to the projectile equa-

tions of motion. Techniques for numerical integration are well known,

and can be found in many of the standard references such as Ref. 68.

Alternately, specialized methods are applicable and one such method

may be found in Ref. 69.

Since all trajectory calculations involve the air density and the

speed of sound vs altitude, a means of calculating these quantities is

needed. This need is met by P ef. 70 and a convenient model for com-

puter application can be found in Ref. 58.

This report is chiefly concerned with the application of more or

less stardard methods to airborne fire control. New methods applicable

to treating windage jump may be found in Section IV, however, and in

Refs. 71 and 72, which contain a simplified set of approximate equations

adaptable to onboard utilization. Methods developed in this report and

in Refs. 71 and 72 essentially comprise the current state of the art in

exterior ballistics for airborne applications. Models developed to date

are applicable to the 20-mm, M56 round. Development of new methods

for treating windage jump may be needed for new rounds, such as the

new 20-mm, 25-mm, and 30-mm rounds under tevelopment.
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APPENDIX

MATRIX NOTATION

The matrix notation f.xplained here is useful in defining the

coordinate transformations and equations which are necessary for

setting up initial conditions for trajectory computations onboard an

aircraft.

In Fig. 24; let S denote a right-handed, rectangular coordinate

system with origin 0 and coordinate axes x,y,z. A point in space, as

measured in S, has coordinates x,y, and z and can be represented as

a column matrix

a y

or as a vector

a= ex +eyy+e Z
x y z

where ex, e, and e are unit vectors in the indicated directions. If

y

e =(x ey, e)

defines a row matrix, then matrix multiplication provides a connection

between the matrix and vector notation for a point in S.

a= ea (415)
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Relation between the S and S' Coordinate Systems
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in Fig. 24, let S' denote another right-handed, rectangular coordinate

system with origin 0' and coordinate axes x', y', z'. If the matrix c, or

the vector c = ec, denotes the position of 0' as measured in S, the

transformation of the coordinates of a point P, represente!- by a' in S-,

into the coordinates of P, represented by a in S, is given by the relation

a = c + Ta' (416)

T is a 3 X 3 matrix defining the angular orientation of the S' system with

respect to the S system. Ii e' is the row matrix of unit vectors defining

the x',y', z' directions in SO, that is, if

X ~ y z

then

e- eT (417)

and also

e =T (418)

where the tilde ('} over a symbol denoting a matrix represents the trans-

pose of that matrix.

It is a known property of an orthogonal transformation matrix, T,

that the inverse, T 1 , equals the transpose, r. That is

T

or

T =I (419)
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where I is the unit matrix. It follows from Eq. (416) that

a' - (a C)

The relations above define transformaLions of position coordinates

between S and St. Equations for velocity transformations can be obtained

by differentiation with respect to time. Differentiation of Eq. (419), where

a dot denotes time diffe. entiation, yields the result

+T + 0 (420)

With

o= (421)

it is seen that i" ; 1 T and so Eq.. (4Z0) may be written as

It follows that the principal diagonal of P2, is zero and !. = -. i.e.,

01 is skew-symmetric, and can be written in the form

}0

0 Q Q-I

ya, 0y

It can be shown that the components of the column matrix PWa' equal the

corresponding components of the vector 6' X a'. That is

e'QW at = 1 X a'
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-"1
where

S•~~~l =exLx + ey 9y +zellz

Hence,6l' is identified as the angular velocity of S' relative to S

measured in S'. It follows from Eq. (421) that

T= Of2 (422)

Differentiation of b = T b' yields

= Tb' + Tb'

where b eb is a position vector. Hence, from Eq. (422)

b = Tb' +Tf'b' = T(L' +w11b')

or, since e' = eT

eb =el L' + el 'b'

This is equivalent to the familiar vector relation

( dt (d9 +a i/s - s

where subsc. ipts S and SO denote the spaces in which the velocities are

observed. If e'b' = b' represents a point P in S', then e'b' is the

velocity of P as observed in S', e b is the velocity of P as observed in S,

"and el I'b' is the component of velocity of P•in S due to the angular

motion of S'.
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Note that if e is constant (i.e., if S is inertial), then from Eqs. (417)

and (422)

= eT = eTQ' = elat

If the column vector representation of f91 in St is

Q X1,

z

then

TO•' (4Z3)

is the column vector representing the components of fQ' in the S coordinate

system. This follows from the fact that there are vectors d and b in S

suchthat X b = il Xb'. Hence,aflb = e'Qlb' = (eT)Q( (b) =

e(TQW T)b and so P. = T92' . That Eq. (423) follows from Q= T9V'T can

be shown by comparison of matrix elements.

If U is the matrix representing a transformation from a space S"

to S', that is, if

at = U a"

and if T is the matrix representing a transformation from S' to S, that is, if

a = Ta'

then
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a TUa"= Wa"

and

W = TU

is the matrix representing a transformation from S" to S. Then

W= TU + TU (424)

From Eq. (422). we may write

W 1 Wf2

= TT

and

Uo

where components of f11 and 0U are written with respect to S" and

components of T are written in S' coordinates. Substitution of these

expressions into Eq. (424) yields

W Q = T'TU + TU QU

or

W W W = TUU2T U + TUfOU

Since W ; TU and W = U T, it follows that

UQwU =U T + UnuU
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If W, WT, and wu are the vector representations of QW, PT' and w Ur

respectively, then

UWW = WT+ U

This may be identified with the vector equations

uW= w +• W U

This development is a proof that angular velocities add,which is a result

that is not intuitively obvious
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